

How to define a rejection class based on model learning?

Sarah Laroui* , Xavier Descombes*, Aurélia Vernay‡, Florent Villiers‡, Bruno Leggio ‡, Eric Debreuve†

*UCA/Inria CRISAM/Laboratoire I3S/CNRS, Sophia Antipolis, France †UCA/Laboratoire I3S/Inria CRISAM/CNRS, Sophia Antipolis, France ‡Bayer SAS, Disease Control Research Center, Lyon, France

PhD (2018-2021), BAYER SAS CIFRE funding

ICPR conference 10 January 2021

Introduction: Short review on rejection class

Proposed strategy

- Model learning
 - Fuzzy membership function (FMF)
 - Here, FMF = Probability Density Function (PDF)
 - Thresholds on the PDFs

Experimental results

- Biological context
- Learning set and feature vectors for model estimation
 - Deep Neural Network (DNN)
 - Bottlenecks
 - Outputs layer
- Learning and Test Procedure
- Results and analysis

Conclusion

Introduction: Short review on rejection class

Proposed strategy

- Model learning
 - Fuzzy membership function (FMF)
 - Here, FMF = Probability Density Function (PDF)
 - Thresholds on the PDFs

Experimental results

- Biological context
- Learning set and feature vectors for model estimation
 - Deep Neural Network (DNN)
 - Bottlenecks
 - Outputs layer
- Learning and Test Procedure
- Results and analysis

Conclusion

State of the Art : How to classify images with rejection class ?

Supervised classification: optimize the accuracy of classifying data into the classes that appear in the learning set

- Classifier = feature space splitter which focuses on optimizing the frontiers between classes
- Rejection option added to a classifier
 - Examples in literature:
 - k-Nearest neighbor classifier: threshold on the distance to the neighbors (1)
 - SVM: threshold on the distance to the maximum-margin hyperplane (2)
 - Deep Neural Network: threshold on the output = confidence score of the prediction (3)

System where the prediction model **and** the selection mechanism are optimized simultaneously

- Examples in literature:
 - Deep Neural Network (4)(5)

Better approach:

- > Take into account the possibility of rejecting a sample in the classifier design
- > Pay attention to the space in-between known classes or away from them

⁽¹⁾ Mukherjee, Sayan, et al. Support vector machine classification of microarray data. Al Memo 1677, Massachusetts Institute of Technology, 1999.

⁽²⁾ Hellman, Martin E. "The nearest neighbor classification rule with a reject option." IEEE Transactions on Systems Science and Cybernetics 6.3 (1970): 179-185.

³⁾ Chow, C. "On optimum recognition error and reject tradeoff." IEEE Transactions on information theory 16.1 (1970): 41-46.

⁽⁴⁾ Geifman, Yonatan, and Ran El-Yaniv. "Selective classification for deep neural networks." Advances in neural information processing systems 30 (2017): 4878-4887.

⁽⁵⁾ Geifman, Yonatan, and Ran El-Yaniv. "Selectivenet: A deep neural network with an integrated reject option." arXiv preprint arXiv:1901.09192 (2019).

Introduction: Short review on rejection class

Proposed strategy

- Model learning
 - Fuzzy membership function (FMF)
 - Here, FMF = Probability Density Function (PDF)
 - Thresholds on the PDFs

- **Experimental results**
 - Biological context
 - Learning set and feature vectors for model estimation
 - Deep Neural Network (DNN)
 - Bottlenecks
 - Outputs layer
 - Learning and Test Procedure
 - Results and analysis

Conclusion

Model and Model Threshold Learning

- Learning
 - One model per class, independently
 - One threshold per model, accounting for classes overlapping

• Each model accepts or rejects a new sample based on threshold

- One model accepts => associate class
- Several models accept => associate class of <u>hightest</u> model acceptance value
- All models reject => rejection class

Model and Model Threshold Learning

- Model type : Gaussian mixture
 - \rightarrow Probability distributions represented as combination of simpler "component" distributions
 - \rightarrow Estimation using EM algorithm
- PDF threshold learning: Two options
 - 1-vs.-all : Meta-class 0: sample from current class (blue) / Meta-class 1: samples from all other classes

Model and Model Threshold Learning

- Model type : Gaussian mixture
 - \rightarrow Probability distributions represented as combination of simpler "component" distributions
 - \rightarrow Estimation using EM algorithm
- PDF threshold learning: Two options
 - 1-vs.-1 : Meta-class 0: sample from current class (blue) / Meta-class 1: sample from each of other classes in turn

Introduction: Short review on rejection class

Proposed strategy

- Model learning
 - Fuzzy membership function (FMF)
 - Here, FMF = Probability Density Function (PDF)
 - Thresholds on the PDFs

Experimental results

- Biological context
- Learning set and feature vectors for model estimation
 - Deep Neural Network (DNN)
 - Bottlenecks
 - Outputs layer
- Learning and Test Procedure
- Results and analysis

Conclusion

Biological context: the power of fungi phenotyping to classify molecules based on their Mode of Action

BAYER E R

Experimental results

Learning set and feature vectors for model estimation

- 4 known classes = 4 fungi phenotypes
- 1 rejection class = future new phenotypes
- 2 feature choices
 - Bottleneck (layer)
 - Output (layer)

Class	Sub_Images Number			
0	4752			
1	3600			
2	3728			
3	2760			
4	4607			
5	6928			
6	3998			
NEW PH	10352			

*Images pre-processing: 1 Image (2160*2160) \rightarrow 16 sub-images (500*500) \rightarrow 16 resized sub-images (240*240)

MobileNet Network fine tuning *Trained on ImageNet database

Learning set and feature vectors for model estimation

Feature preprocessing

MobileNet Network fine tuning *Trained on ImageNet database

Bottlenecks

- Dimension = 1001

 \Rightarrow Dimension reduction: Variable importance or PCA

Output

- Dimension = number of class

Components in [0,1] with high density close to 0 or close to one

- \Rightarrow Not adapted to Gaussian mixture modeling
- \Rightarrow Data symmetrization (2^d more samples)

Learning and Test Procedure

- 1 vs. 1 or 1 vs. All
- LR/Misclassification

Learning and Test Procedure

Results and analysis

Methods	Features		Results	Threshold learning			
				Regression		Misclassif.	
				1-vs-all	1-vs-1	1-vs-all	1-vs-1
Proposed	Bottleneck (Spheric GMM)	Var. importance	Known	94	88	91	86
			Rejection	77	87	98	91
			Dimension	90	90	90	90
			Nb components	10	6	10	6
		PCA	Known	93	92	88	90
			Rejection	82	85	90	89
			Dimension	30	30	30	30
			Nb components	10	11	11	10
	Output (Diagonal GMM)	Original	Known	97	97	78	95
			Rejection	72	73	75	71
			Dimension			7	
			Nb components	6	11	11	10
		Symmetrized	Known	97	96	52	73
			Rejection	71	76	91	79
			Dimension			7	
			Nb components	7	10	9	8

Results and analysis

De Stefano, Claudio & Sansone, Carlo & Vento, Mario. (2000). *To reject or not to reject: That is the question* - An answer in case of neural classifiers. Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on. 30. 84 - 94. 10.1109/5326.827457.

Methods	Features		Results	Threshold learning			
				Regression		Misclassif.	
				1-vs-all	1-vs-1	1-vs-all	1-vs-1
Proposed -	Bottleneck (Spheric GMM)	Var. importance	Known	94	88	91	86
			Rejection	77	87	98	91
			Dimension	90	90	90	90
			Nb components	10	6	10	6
		PCA	Known	93	92	88	90
			Rejection	82	85	90	89
			Dimension	30	30	30	30
			Nb components	10	11	11	10
	Output (Diagonal GMM)	Original	Known	97	97	78	95
			Rejection	72	73	75	71
			Dimension			7	
			Nb components	6	11	11	10
		Symmetrized	Known	97	96	52	73
			Rejection	71	76	91	79
			Dimension		,	7	
			Nb components	7	. 10	9	8
CNNro			Known	$\begin{pmatrix} 65\\ 100 \end{pmatrix}$			
			Rejection	100			

Successful detection on known & new phenotypes \rightarrow Better results with our method than with Stefano *et al.*

Conclusion

How

tO

define

rejection

class

based

on

model

learning?

Innovative method of supervised classification with rejection class

=> which accounts for the neighboring relationships between the known classes

- Model = Gaussian mixture
- Threshold learning = Misclassification-based / Regression-based (LR)
- Options=«1 vs. All» / «1 vs.1»

Method validated on real data:

- Data = Transmitted light microscopy images
- Classes = Phenotypes / Molecule's MoA = 4 identified phenotypes + a pool of new phenotypes
- Features = Output / Bottlenecks (with or without preprocessing) <u>Best results with :</u>
 - Features = Bottlenecks,
 - Feature reduction dimension: Variable importance
 - Threshlod learning = 1 vs. All, Misclassification
 - Classification accuracy =~ 94 %
- ⇒ With 91 % on known phenotypes and 98 % on rejection class

Comparison with existing method:

- Deep Neural Network: threshold on the output = confidence score of the prediction
- Best result with our proposed method: 94.5 % against 82.5 % of accuracy
- \Rightarrow 65% on known classes and 100% on rejection class

Sarah Laroui

BAYER SAS – CropScience Disease Control Lyon Aurélia Vernay

> Morpheme Eric Debreuve Xavier Descombes

Acknowledgements:

BAYER SAS – CropScience Disease Control Lyon Raphaël Fournel Bruno Leggio Florent Villiers

