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State-of-the-Art
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::> Requires a lot of human acquisitions
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Asymmetrical problem
:> Use of reinforcement learning
:> Only need action detection ground-truth
:> Extracting spot frames while observing as

few frames as possible

ﬂ End-to-End training

::> Increase efficiency on action spotting task
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Throw

Global dynamic: Then, at step n, ActionSpotter (AS), has
the following dynamic:

( fn=BB(v(n))

hn = GRU(fTw hnfl)
l, =SF(h,)

AS(Vr(nys hn1) - pn = CL(hy) 0
= arg max (Pn.c)

Vn+1 = Vn U {(Tnylnyan)}

Tn+1 = Tn + BROW (h,)

with h,,_1 = GRU(BB({v(; 17 1)), the memory of the past
viewed frames (or frame chunks).
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Experiments

THUMOS’14
* Thum0514 Approach Detection mAP@ Spotting mAP
PP 01 [ 02 [ 03 | 04 | 05 potting
Glimpses [5] 489 | 440 | 360 | 264 | 17.1 -
SMS [30] 510 | 452 | 365 | 278 | 17.8 -
M-CNN [31] 477 | 435 | 363 | 287 | 190 412
CDC [32] - - | 413 | 307 | 247 315
TURN [33] 540 | 509 | 44.1 | 349 | 256 44.8
R-C3D [34] 545 | 515 | 448 | 356 | 28.9 522
SSN [35] 66.0 | 594 | 519 | 41.0 | 29.8 -
A-Search [14] - - | 518 | 424 | 308 -
CBR [36] 60.1 | 56.7 | 501 | 413 | 31.0 50.1

BSN + UNet [37] - - 535 | 450 | 369 -
Re-thinking F-RCNN [38] | 59.8 | 57.1 | 532 | 485 | 425 -
D-SSAD [39] - - 60.2 | 54.1 | 44.2 59.7

Ours (TSN backbone) - - - - - 62.4
Ours (I3D backbone) - - - - - 65.6
. ActivityNet v1.2
° ACt|V|tyNet12 A h Detection mAP@ q 1o MAP

pproac 05 [ 075 095 [ Avg | ~Potne

W-TALC [45] 370 | 146 - 18.0 -

SSN-SW [35] - - - 18.1 -

3C-Net [46] 372 | 23.7 9.2 21.7 -

FPTADC [47] 376 | 21.8 2.4 219 -

SSN-TAG [35] 392 | 253 5.4 259 554

BSN [48] 46.5 | 30.0 8.0 30.0 49.6

BMN [49] 50.1 | 348 8.3 33.85 553

Ours (TSN backbone) - - - - 58.1

Ours (I3D backbone) - - - - 60.2
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Conclusion

Key idea: Use of Reinforcement Learning +
End-to-End training

Key properties:

* Only need action detection ground-truth
* Able to sparsely browse videos

« MAP as training criterion
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