25th International Conference on Pattern Recognition

ActionSpotter: Deep Reinforcement **Learning Framework for Temporal Action Spotting in Videos**

Guillaume VAUDAUX-RUTH^{1,2}, Adrien CHAN-HON-TONG^{1,3}, Catherine² ACHARD ²Sorbonne Université ¹ONERA ³Université Paris-Saclay

State-of-the-Art

Alwassel et al., ECCV 2018

State-of-the-Art

Alwassel et al., ECCV 2018

Requires a lot of human acquisitions

Asymmetrical problem

Asymmetrical problem

Use of reinforcement learning

Asymmetrical problem

Use of reinforcement learning

Only need action detection ground-truth

Asymmetrical problem

Use of reinforcement learning

Only need action detection ground-truth

Extracting spot frames while observing as

few frames as possible

Asymmetrical problem

Use of reinforcement learning

Only need action detection ground-truth

Extracting spot frames while observing as

few frames as possible

End-to-End training

Asymmetrical problem

Increase efficiency on action spotting task

Global dynamic: Then, at step n, ActionSpotter (AS), has the following dynamic:

$$AS(v_{\tau(n)}, h_{n-1}) : \begin{cases} f_n = BB(v_{\tau(n)}) \\ h_n = GRU(f_n, h_{n-1}) \\ l_n = SF(h_n) \\ p_n = CL(h_n) \\ \alpha_n = \arg\max_{c} (p_{n,c}) \\ \mathcal{V}_{n+1} = \mathcal{V}_n \cup \{(\tau_n, l_n, \alpha_n)\} \\ \tau_{n+1} = \tau_n + BROW(h_n) \end{cases}$$
(1)

with $h_{n-1} = \text{GRU}(BB(\{v_{\tau(i)}\}_{i=1}^{n-1}))$, the memory of the past viewed frames (or frame chunks).

Global dynamic: Then, at step n, ActionSpotter (AS), has the following dynamic:

$$AS(v_{\tau(n)}, h_{n-1}) : \begin{cases} f_n = BB(v_{\tau(n)}) \\ h_n = GRU(f_n, h_{n-1}) \\ l_n = SF(h_n) \\ p_n = CL(h_n) \\ \alpha_n = \arg\max(p_{n,c}) \\ v_{n+1} = v_n \cup \{(\tau_n, l_n, \alpha_n)\} \\ \tau_{n+1} = \tau_n + BROW(h_n) \end{cases}$$
(1)

with $h_{n-1} = \text{GRU}(BB(\{v_{\tau(i)}\}_{i=1}^{n-1}))$, the memory of the past viewed frames (or frame chunks).

Global dynamic: Then, at step n, ActionSpotter (AS), has the following dynamic:

$$AS(v_{\tau(n)}, h_{n-1}) : \begin{cases} f_n = BB(v_{\tau(n)}) \\ h_n = GRU(f_n, h_{n-1}) \\ l_n = SF(h_n) \\ p_n = CL(h_n) \\ \alpha_n = \arg\max(p_{n,c}) \\ v_{n+1} = v_n \cup \{(\tau_n, l_n, \alpha_n)\} \\ \tau_{n+1} = \tau_n + BROW(h_n) \end{cases}$$
(1)

with $h_{n-1} = \text{GRU}(BB(\{v_{\tau(i)}\}_{i=1}^{n-1}))$, the memory of the past viewed frames (or frame chunks).

Global dynamic: Then, at step n, ActionSpotter (AS), has the following dynamic:

$$AS(v_{\tau(n)}, h_{n-1}) : \begin{cases} f_n = BB(v_{\tau(n)}) \\ h_n = GRU(f_n, h_{n-1}) \\ l_n = SF(h_n) \\ p_n = CL(h_n) \\ \alpha_n = \arg\max(p_{n,c}) \\ \mathcal{V}_{n+1} = \mathcal{V}_n \cup \{(\tau_n, l_n, \alpha_n)\} \\ \tau_{n+1} = \tau_n + BROW(h_n) \end{cases}$$
(1)

with $h_{n-1} = \text{GRU}(BB(\{v_{\tau(i)}\}_{i=1}^{n-1}))$, the memory of the past viewed frames (or frame chunks).

Global dynamic: Then, at step n, ActionSpotter (AS), has the following dynamic:

$$AS(v_{\tau(n)}, h_{n-1}) : \begin{cases} f_n = BB(v_{\tau(n)}) \\ h_n = GRU(f_n, h_{n-1}) \\ l_n = SF(h_n) \\ p_n = CL(h_n) \\ \alpha_n = \arg\max(p_{n,c}) \\ \\ \mathcal{V}_{n+1} = \mathcal{V}_n \cup \{(\tau_n, l_n, \alpha_n)\} \\ \tau_{n+1} = \tau_n + BROW(h_n) \end{cases}$$
(1)

with $h_{n-1} = \text{GRU}(BB(\{v_{\tau(i)}\}_{i=1}^{n-1}))$, the memory of the past viewed frames (or frame chunks).

Global dynamic: Then, at step n, ActionSpotter (AS), has the following dynamic:

$$AS(v_{\tau(n)}, h_{n-1}) : \begin{cases} f_n = BB(v_{\tau(n)}) \\ h_n = GRU(f_n, h_{n-1}) \\ l_n = SF(h_n) \\ p_n = CL(h_n) \\ \alpha_n = \arg\max(p_{n,c}) \\ v_{n+1} = v_n \cup \{(\tau_n, l_n, \alpha_n)\} \\ \tau_{n+1} = \tau_n + BROW(h_n) \end{cases}$$
(1)

with $h_{n-1} = \text{GRU}(BB(\{v_{\tau(i)}\}_{i=1}^{n-1}))$, the memory of the past viewed frames (or frame chunks).

$$r_{\pi,n} = \text{mAP}(\mathcal{V}_n) - \text{mAP}(\mathcal{V}_{n-1}) + \rho \mathcal{H}(\pi(n))$$

$$R_{\pi,n} = \sum_{k=0}^{N-n-1} \gamma^k r_{\pi,k+n}$$

$$\mathcal{L}_{global} = \mathcal{L}_{cls} + \lambda_1 \mathcal{L}_{critic} - \lambda_2 J_{actor}$$

$$\nabla J_{actor} = \nabla \mathbb{E} \left[\sum_{n=1}^{N} \log(\pi(n)) (R_{\pi,n} - \mathbb{E}[R_{\pi,n}|h_n]) \right]$$

Global dynamic: Then, at step n, ActionSpotter (AS), has the following dynamic:

$$AS(v_{\tau(n)}, h_{n-1}) : \begin{cases} f_n = BB(v_{\tau(n)}) \\ h_n = GRU(f_n, h_{n-1}) \\ l_n = SF(h_n) \\ p_n = CL(h_n) \\ \alpha_n = \arg\max(p_{n,c}) \\ v_{n+1} = v_n \cup \{(\tau_n, l_n, \alpha_n)\} \\ \tau_{n+1} = \tau_n + BROW(h_n) \end{cases}$$
(1)

with $h_{n-1} = \text{GRU}(BB(\{v_{\tau(i)}\}_{i=1}^{n-1}))$, the memory of the past viewed frames (or frame chunks).

$$r_{\pi,n} = \text{mAP}(\mathcal{V}_n) - \text{mAP}(\mathcal{V}_{n-1}) + \rho \mathcal{H}(\pi(n))$$

$$N-n-1$$

$$R_{\pi,n} = \sum_{k=0}^{N-n-1} \gamma^k r_{\pi,k+n}$$

$$\mathcal{L}_{global} = \mathcal{L}_{cls} + \lambda_1 \mathcal{L}_{critic} - \lambda_2 J_{actor}$$

$$\nabla J_{actor} = \nabla \mathbb{E} \left[\sum_{n=1}^{N} \log(\pi(n)) (R_{\pi,n} - \mathbb{E}[R_{\pi,n}|h_n]) \right]$$

t

Global dynamic: Then, at step n, ActionSpotter (AS), has the following dynamic:

$$AS(v_{\tau(n)}, h_{n-1}) : \begin{cases} f_n = BB(v_{\tau(n)}) \\ h_n = GRU(f_n, h_{n-1}) \\ l_n = SF(h_n) \\ p_n = CL(h_n) \\ \alpha_n = \arg\max(p_{n,c}) \\ \mathcal{V}_{n+1} = \mathcal{V}_n \cup \{(\tau_n, l_n, \alpha_n)\} \\ \tau_{n+1} = \tau_n + BROW(h_n) \end{cases}$$
(1)

with $h_{n-1} = \text{GRU}(BB(\{v_{\tau(i)}\}_{i=1}^{n-1}))$, the memory of the past viewed frames (or frame chunks).

$$r_{\pi,n} = \text{mAP}(\mathcal{V}_n) - \text{mAP}(\mathcal{V}_{n-1}) + \rho \mathcal{H}(\pi(n))$$

$$R_{\pi,n} = \sum_{k=0}^{N-n-1} \gamma^k r_{\pi,k+n}$$

$$\mathcal{L}_{global} = \mathcal{L}_{cls} + \lambda_1 \mathcal{L}_{critic} - \lambda_2 J_{actor}$$

$$\mathcal{L}_{global} = \mathcal{L}_{cls} + \lambda_1 \mathcal{L}_{critic} - \lambda_2 J_{actor}$$

$$abla J_{actor} =
abla \mathbb{E} \left[\sum_{n=1}^{N} \log(\pi(n)) (R_{\pi,n} - \mathbb{E}[R_{\pi,n}|h_n]) \right]$$

Global dynamic: Then, at step n, ActionSpotter (AS), has the following dynamic:

$$AS(v_{\tau(n)}, h_{n-1}) : \begin{cases} f_n = BB(v_{\tau(n)}) \\ h_n = GRU(f_n, h_{n-1}) \\ l_n = SF(h_n) \\ p_n = CL(h_n) \\ \alpha_n = \arg\max(p_{n,c}) \\ v_{n+1} = v_n \cup \{(\tau_n, l_n, \alpha_n)\} \\ \tau_{n+1} = \tau_n + BROW(h_n) \end{cases}$$
(1)

with $h_{n-1} = \text{GRU}(BB(\{v_{\tau(i)}\}_{i=1}^{n-1}))$, the memory of the past viewed frames (or frame chunks).

$$r_{\pi,n} = \text{mAP}(\mathcal{V}_n) - \text{mAP}(\mathcal{V}_{n-1}) + \rho \mathcal{H}(\pi(n))$$

$$R_{\pi,n} = \sum_{k=0}^{N-n-1} \gamma^k r_{\pi,k+n}$$

$$\mathcal{L}_{global} = \mathcal{L}_{cls} + \lambda_1 \mathcal{L}_{critic} - \lambda_2 J_{actor}$$

$$\nabla J_{actor} = \nabla \mathbb{E} \left[\sum_{n=1}^{N} \log(\pi(n)) (R_{\pi,n} - \mathbb{E}[R_{\pi,n}|h_n]) \right]$$

$$\mathcal{L}_{global} = \mathcal{L}_{cls} + \lambda_1 \mathcal{L}_{critic} - \lambda_2 J_{actor}$$

$$\nabla J_{actor} = \nabla \mathbb{E} \left[\sum_{n=1}^{N} \log(\pi(n)) (R_{\pi,n} - \mathbb{E}[R_{\pi,n}|h_n]) \right]$$

Global dynamic: Then, at step n, ActionSpotter (AS), has the following dynamic:

$$AS(v_{\tau(n)}, h_{n-1}) : \begin{cases} f_n = BB(v_{\tau(n)}) \\ h_n = GRU(f_n, h_{n-1}) \\ l_n = SF(h_n) \\ p_n = CL(h_n) \\ \alpha_n = \arg\max(p_{n,c}) \\ v_{n+1} = v_n \cup \{(\tau_n, l_n, \alpha_n)\} \\ \tau_{n+1} = \tau_n + BROW(h_n) \end{cases}$$
(1)

with $h_{n-1} = \text{GRU}(BB(\{v_{\tau(i)}\}_{i=1}^{n-1}))$, the memory of the past viewed frames (or frame chunks).

$$r_{\pi,n} = \text{mAP}(\mathcal{V}_n) - \text{mAP}(\mathcal{V}_{n-1}) + \rho \mathcal{H}(\pi(n))$$

$$R_{\pi,n} = \sum_{k=0}^{N-n-1} \gamma^k r_{\pi,k+n}$$

$$\mathcal{L}_{global} = \mathcal{L}_{cls} + \lambda_1 \mathcal{L}_{critic} - \lambda_2 J_{actor}$$

$$\mathcal{L}_{global} = \mathcal{L}_{cls} + \lambda_1 \mathcal{L}_{critic} - \lambda_2 J_{actor}$$

$$\nabla J_{actor} = \nabla \mathbb{E} \left[\sum_{n=1}^{N} \log(\pi(n)) (R_{\pi,n} - \mathbb{E}[R_{\pi,n}|h_n]) \right]$$

Experiments

Thumos14

THUMOS'14									
Approach		Dete	Spotting mAP						
	0.1	0.2	0.3	0.4	0.5	Spotting man			
Glimpses [5]	48.9	44.0	36.0	26.4	17.1	-			
SMS [30]	51.0	45.2	36.5	27.8	17.8	-			
M-CNN [31]	47.7	43.5	36.3	28.7	19.0	41.2			
CDC [32]	-	-	41.3	30.7	24.7	31.5			
TURN [33]	54.0	50.9	44.1	34.9	25.6	44.8			
R-C3D [34]	54.5	51.5	44.8	35.6	28.9	52.2			
SSN [35]	66.0	59.4	51.9	41.0	29.8	-			
A-Search [14]	-	-	51.8	42.4	30.8	-			
CBR [36]	60.1	56.7	50.1	41.3	31.0	50.1			
BSN + UNet [37]	-	-	53.5	45.0	36.9	-			
Re-thinking F-RCNN [38]	59.8	57.1	53.2	48.5	42.5	-			
D-SSAD [39]	-	-	60.2	54.1	44.2	59.7			
Ours (TSN backbone)	-	-	-	-	-	62.4			
Ours (I3D backbone)	-	-	-	-	-	65.6			

ActivityNet1.2

ActivityNet v1.2								
Approach		Detectio	Spotting mAP					
Арргоасп	0.5	0.75	0.95	Avg	Spotting mai			
W-TALC [45]	37.0	14.6	-	18.0	-			
SSN-SW [35]	-	-	-	18.1	-			
3C-Net [46]	37.2	23.7	9.2	21.7	-			
FPTADC [47]	37.6	21.8	2.4	21.9	-			
SSN-TAG [35]	39.2	25.3	5.4	25.9	55.4			
BSN [48]	46.5	30.0	8.0	30.0	49.6			
BMN [49]	50.1	34.8	8.3	33.85	55.3			
Ours (TSN backbone)	-	-	-	-	58.1			
Ours (I3D backbone)	-	-	-	-	60.2			

Conclusion

Key idea: Use of Reinforcement Learning + End-to-End training

Key properties:

- Only need action detection ground-truth
- Able to sparsely browse videos
- mAP as training criterion

25th International Conference on Pattern Recognition

ActionSpotter: Deep Reinforcement **Learning Framework for Temporal Action Spotting in Videos**

Guillaume VAUDAUX-RUTH^{1,2}, Adrien CHAN-HON-TONG^{1,3}, Catherine² ACHARD ²Sorbonne Université ¹ONERA ³Université Paris-Saclay

sorbonne université **PARIS-SACLAY**