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Fourier Phase Retrieval
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e Phase retrieval aims at recovering a signal x from its Fourier magnitudes y = |Fx|, where
F is the Fourier transform.

e Fourier phase retrieval arises in different areas of research, for example in X-ray
crystallography, microscopy or astronomical imaging.

e This problem is ill-posed since many signals can have the same Fourier magnitudes.



Proposed Method: Conditional GANs for Phase Retrieval

We train a conditional GAN [3, 5] to reconstruct the images from their Fourier magnitude.

e At training time the following optimization problem is solved:

mGin max Lagv(D, G) + ALrec(G), (1)

with an adversarial component:

»Cadv(Dv G) = EX[IOgD(Xa}/)] +Ex,z[|0g (1 - D(G(Z,y),y))], (2)

and a reconstruction component

Erec(G) :Ex,z“|x_ G(Z’y)Hl]' (3)



Proposed Method: Conditional GANs for Phase Retrieval

e At test time the latent variable z is optimized for each measurement y to minimize the
error

z* = argmin ||y — [FG(z.y)|ll3- (4)

to find an X = G(z*,y) ~ x. This is inspired by the work of Hand et al. [2].

e We denote our approach with this latent-space optimization as PRCGAN*, whereas the
approach without this optimization as PRCGAN.



Evaluation: Experimental Setup

For the evaluation we consider the following experimental setup:

e We compare the performance with the following existing methods:
1. Fienup’s hybrid-input-output (HIO) algorithm [1]
2. Relaxed Averaged Alternating Reflections (RAAR) algorithm [4]
3. End-to-end (E2E) learning with MAE-loss function
4. Deep Generative Prior (DPR) [2].

e We use the following datsets: MINIST, Fashion-MNIST and CelebA.

e We report the mean squared error (MSE), the mean absolute error (MAE) and the
structural similarity index (SSIM) of the reconstructions.



Evaluation: Fourier PR on MNIST
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Figure 1: Reconstructions from the Fourier magnitudes of the MNIST test dataset.
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Evaluation: Fourier PR on Fashion-MNIST
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Figure 2: Reconstructions from the Fourier magnitudes of the Fashion-MNIST test dataset.




Evaluation: Fourier PR on MNIST and Fashion-MNIST

Dataset Metric ~ HIO RAAR E2E DPR  PRCGAN PRCGAN*
MSE 0.0441 0.0489 0.0183 0.0093  0.0168 0.0010
MNIST MAE  0.1016 0.1150 0.0411 0.0221 0.0399 0.0043

SSIM  0.5708 0.5232 0.8345 0.9188  0.8449 0.9898

MSE 0.0646 0.0669 0.0128 0.0280 0.0151 0.0087
Fashion-MNIST MAE  0.1604 0.1673 0.0526 0.0856 0.0572 0.0412
SSIM  0.4404 0.4314 0.7940 0.6602 0.7749 0.8580

Table 1: Evaluation results for MNIST, Fashion-MNIST and CelebA for the reconstructions from the
Fourier magnitudes. We register the reconstructions for MNIST and Fashion-MNIST.



Evaluation: Fourier PR CelebA
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Figure 3: Reconstructions from Fourier magnitudes of the CelebA test dataset.
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Evaluation: Fourier Phase Retrieval CelebA

Dataset Metric  HIO RAAR E2E DPR  PRCGAN PRCGAN*

MSE 0.0737 0.0729 0.0106 0.0388 0.0138 0.0093
CelebA  MAE  0.2088 0.2073 0.0699 0.1323 0.0804 0.0642
SSIM  0.1671 0.2274 0.7444 0.5299 0.6799 0.7631

Table 2: Evaluation results for MNIST, Fashion-MNIST and CelebA for the reconstructions from the
Fourier magnitudes. We register the reconstructions for MNIST and Fashion-MNIST.
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