

Deep Universal Blind Image Denoising

Jae Woong Soh & Nam Ik Cho Seoul National University

Image Denoising

- Aims to recover the latent clean image from an observed noisy image.
- Has been a longstanding problem due to inevitable noise corruption during image acquisition.
- Degradation model
 - Clean image $\boldsymbol{x},$ Noisy image $\boldsymbol{y},$ Noise \boldsymbol{n}

$$\mathbf{y} = \mathbf{x} + \mathbf{n}$$

 Area to essure the latent share image from an absenced ratio image.
 Has been a longstanding pottlem due to investable noise complian during image explainton.

Traditional Methods

• Maximum a posteriori (MAP) inference

$$\hat{\mathbf{x}} = \arg \max_{\mathbf{x}} \log p(\mathbf{x} | \mathbf{y}),$$

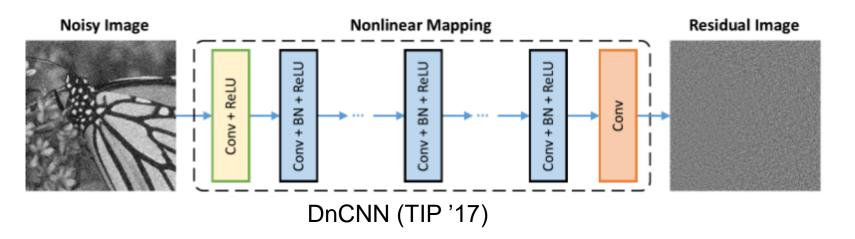
$$= \arg \max_{\mathbf{x}} \log p(\mathbf{y} | \mathbf{x}) + \log p(\mathbf{x})$$

$$\stackrel{\text{Likelihood}}{\underset{\text{(Data fidelity)}}{\text{Explanation}}} \stackrel{\text{Prior}}{\underset{\text{(Regularization)}}{\text{Explanation}}}$$

- Explicitly define the data fidelity term and the image prior term.
- Superior in terms of interpretability and flexibility.
- Limited to i.i.d. Gaussian noise, requires a long computation time.

CNN-based Methods

- Convolutional Neural Networks
 - Implicitly learns the mapping based on the supervised learning.
 - Surpass the conventional non-learning methods by large margin.
 - Lack in flexibility, especially for blind denoising.
 - Handcrafted prior knowledge cannot be easily injected.



Proposed Method

Deep Universal Blind Image Denoiser

Leverages the advantages of MAP inference & power of deep learning.

Proposed Method

- Deep Universal Blind Image Denoiser (DUBD)
 - CNN-based universal blind denoiser that can handle a wide range of noise-level including spatially & spectrally varying noise.
 - Incorporates prior knowledge, further lifts the performance.
 - Outperforms other denoisers with a comparable number of params.
 - Can also be applied to real-world noisy images.

Probabilistic View

• Reformulate of the log-posterior by introducing a new random variable c.

$$\log p(\mathbf{x}|\mathbf{y}) = \log \int_{\mathbf{c}} p(\mathbf{x}|\mathbf{y}, \mathbf{c}) p(\mathbf{c}|\mathbf{y}) d\mathbf{c},$$

$$\approx \log p(\mathbf{x}|\mathbf{y}, \hat{\mathbf{c}}) p(\hat{\mathbf{c}}|\mathbf{y}),$$

$$= \log p(\mathbf{x}|\mathbf{y}, \hat{\mathbf{c}}) + \log p(\hat{\mathbf{c}}|\mathbf{y})$$

• The MAP inference into two sub-problems.

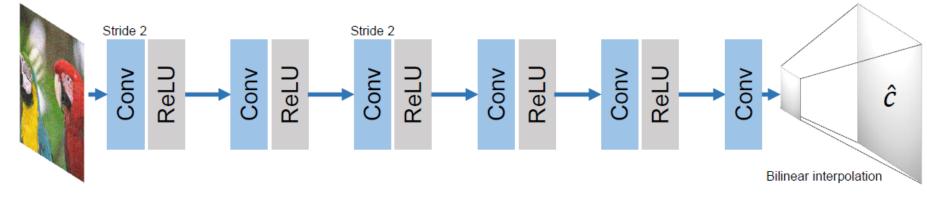
$$\hat{\mathbf{c}} = \arg \max_{\mathbf{c}} \log p(\mathbf{c}|\mathbf{y}),$$
$$\hat{\mathbf{x}} = \arg \max_{\mathbf{x}} \log p(\mathbf{x}|\mathbf{y}, \hat{\mathbf{c}})$$

• Two neural networks for inference.

 $\hat{\mathbf{c}} \approx g_{\theta}(\mathbf{y})$ $\hat{\mathbf{x}} \approx f_{\phi}(\mathbf{y}; \hat{\mathbf{c}})$

Conditional Estimation Network: $g_{\theta}(\mathbf{y})$

- We choose the noise-level as c.
 - Unimodal with a sharp peak $p(\mathbf{c}|\mathbf{y})$
- Network Architecture
 - 3×3 kernels with 64 channels.

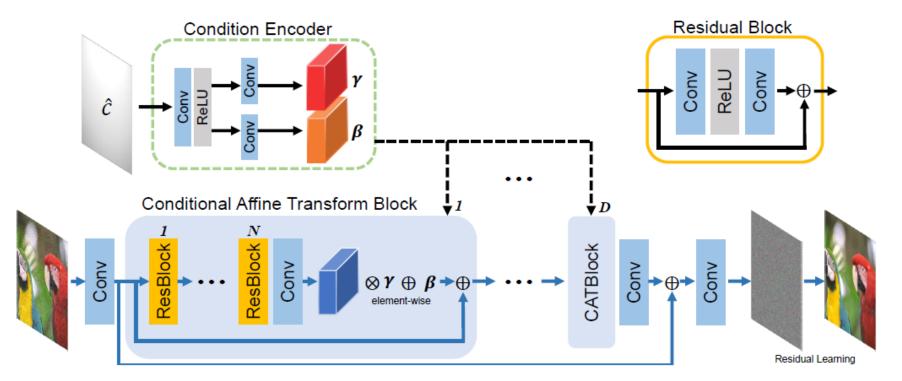


Loss function

$$\mathcal{L}_{c}(\theta) = \mathbb{E}[||\sigma - g_{\theta}(\mathbf{y})||_{2}^{2}]$$

Tunable Denoising Network: $f_{\phi}(\mathbf{y}; \hat{\mathbf{c}})$

• Network Architecture

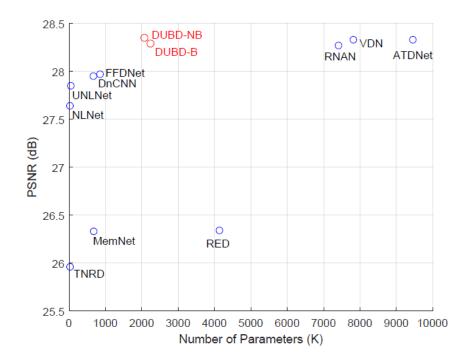


Loss function

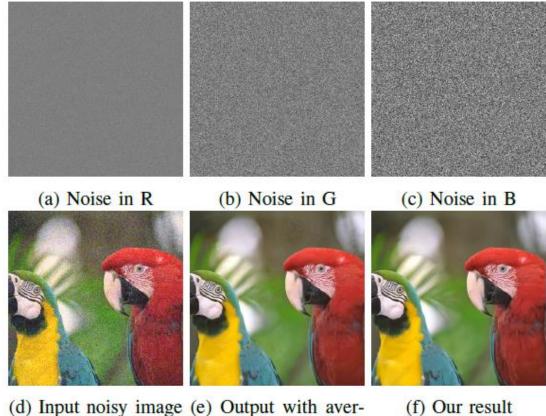
$$\mathcal{L}_{dn}(\phi) = \mathbb{E}[||\mathbf{x} - f_{\phi}(\mathbf{y}; \mathbf{c})||_{2}^{2}]$$

• The number of parameters

Methods	RED [11]	CDnCNN* [9]	FFDNet [10]	ATDNet* [14]	RNAN [16]	VDN* [17]	DUBD-NB (Ours)	DUBD-B* (Ours)
Parameters	4,135 K	668 K	825 K	9,453 K	7,409 K	7,817 K	2,088 K	2,239 K
PSNR (dB)	26.25	27.59	28.05	29.20	29.08	28.86	29.16	29.14

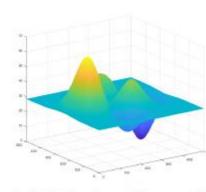


• Dealing with spectrally-spatially variant noise



age noise-level

(f) Our result

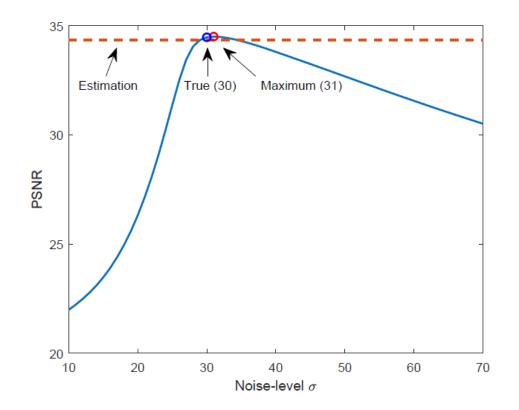


(a) Noise-level in spatial (b) Input noisy image dimension

(c) Output with average noise-level

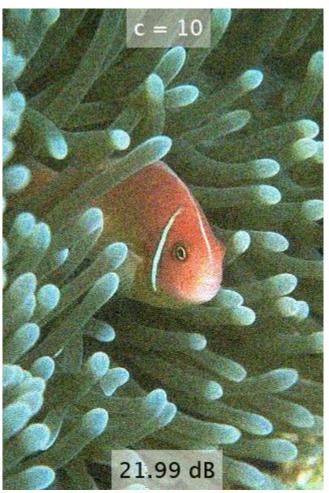
(d) Our result

• Traversing conditional variable



• Traversing conditional variable

• Traversing conditional variable

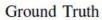


Experimental Results (PSNR)

• Results on AWGN synthetic noise.

									·			
Noise-level	Dataset	CBM3D [8]	TNRD [24]	RED [11]	MemNet* [25]	CDnCNN* [9]	FFDNet [10]	UNLNet* [13]	ATDNet* [14]	VDN* [17]	DUBD-NB (Ours)	DUBD-B* (Ours)
$\sigma = 10$	CBSD68	35.91	-	33.89	28.52	36.13	36.14	36.20	36.29	36.29	36.35	36.33
	Kodak24	36.43	-	34.73	29.70	36.46	36.69	-	36.98	36.85	37.03	37.02
	Urban100	36.00	-	34.42	29.44	34.61	35.78	-	36.31	35.97	36.32	36.23
	CBSD68	29.73	-	28.45	28.39	30.34	30.32	30.21	30.61	30.64	30.65	30.62
$\sigma = 30$	Kodak24	30.75	-	29.53	29.55	31.17	31.27	31.18	31.72	31.67	31.75	31.75
	Urban100	30.36	-	28.84	28.93	30.00	30.53	30.41	31.48	31.14	31.46	31.43
	CBSD68	27.38	25.96	26.34	26.33	27.95	27.97	27.85	28.33	28.33	28.35	28.31
$\sigma = 50$	Kodak24	28.46	27.04	27.42	27.51	28.83	28.98	28.86	29.48	29.44	29.51	29.50
	Urban100	27.94	25.52	26.25	26.53	27.59	28.05	27.95	29.20	28.86	29.16	29.14
$\sigma = 70$	CBSD68	26.00	-	25.09	25.09	25.66	26.55	-	-	26.93	26.96	26.89
	Kodak24	27.09	-	26.16	26.24	26.36	27.56	-	-	28.05	28.12	28.11
	Urban100	26.31	-	24.58	24.93	25.24	26.40	-	-	27.31	27.59	27.58

Experimental Results (Visualization)



RED [11]

MemNet [25]

DUBD-B (Ours)



FFDNet [10]

UNLNet [13]

ATDNet [14]

Application to Real-World Noisy Image

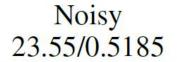
• Choice for the conditional variable

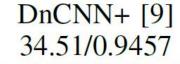
 $\mathbf{c} = Avgpool_{4 \times 4}(\mathbf{y})$

• Results (DND)

Method	Parameters	PSNR	SSIM
DnCNN+ [9]	668 K	37.90	0.9430
FFDNet+ [10]	825 K	37.61	0.9415
CBDNet [30]	4,365 K	38.06	0.9421
ATDNet [14]	9,453 K	39.19	0.9526
RIDNet [31]	1,499 K	39.26	0.9528
VDN [17]	7,817 K	39.38	0.9518
DUBD-R (Ours)	2,088 K	39.38	0.9526
DUBD-R+ (Ours)	2,088 K	39.44	0.9530

Visualized Results on Real-World Noise





FFDNet+ [10] 34.47/0.9510 CBDNet [30] 35.43/0.9469

ATDNet [14]

36.03/0.9506

RIDNet [31]

37.17/0.9596

VDN [17]

37.34/0.9619

DUBD-R+ 37.61/0.9637

Conclusion

- We have proposed a CNN-based universal blind denoiser.
 - Based on splitting the original MAP problem into two sub-problems.
 - Can reduce noise from various environments.
 - Can also be manually tuned in accordance with user preference.
 - Outperforms other methods.

Thank You!

