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Introduction

e The performance of deep models heavily depends on the availability of a large
amount of labeled training data.

How to handle unlabeled datasets? .
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Introduction

e The performance of deep models heavily depends on the availability of a large
amount of labeled training data.

e A naive strategy is to transfer knowledge from available labeled source datasets of
related but different domains. This strategy may exhibit poor performance due to
the shift between the distributions of the source and target domains.
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Related Works

e Unsupervised Domain Adaptation (UDA) aims to eliminate the shift between
the domains and train a classifier on source labeled samples that generalizes well
on the target domain.
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Related Works

e Unsupervised Domain Adaptation (UDA) aims to eliminate the shift between
the domains and train a classifier on source labeled samples that generalizes well
on the target domain.

e UDA relies on the assumption that the domains share the same label space.
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Related Works

e Unsupervised Domain Adaptation (UDA) aims to eliminate the shift between
the domains and train a classifier on source labeled samples that generalizes well
on the target domain.

e UDA relies on the assumption that the domains share the same label space.
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Problem Definition

e Partial Domain Adaptation (PDA) is an adaptation scenario in which the
target label space is a subset of the source label space.

e The main purpose of PDA methods is to identify and reject the outlier source
classes and align the domain distributions across the shared label space.
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Problem Definition

e Partial Domain Adaptation (PDA) is an adaptation scenario in which the
target label space is a subset of the source label space.

e The main purpose of PDA methods is to identify and reject the outlier source
classes and align the domain distributions across the shared label space.
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Proposed Method

e Propose PDA method can

— identify and reject the outlier source classes
— 1increase the confidence level of the classifier

— align the marginal and class-conditional distributions of both domains.
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Proposed Method

e Propose PDA method can

— identify and reject the outlier source classes
— 1increase the confidence level of the classifier

— align the marginal and class-conditional distributions of both domains.
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Numerical Results

e Experiments on two commonly used datasets: Office-31 and Office-Home.

Office-31 dataset

mrs.

Accuracy of partial domain adaptation tasks on Office-31

Method A—->W D->W W —-D A—-D D— A W — A Avg
ResNet 75.59 96.27 98.09 83.44 83.92 84.97 87.05
DANN 73.56 96.27 98.73 81.53 82.78 86.12 86.50
ADDA 75.67 95.38 99.85 83.41 83.62 84.25 87.03
RTN 78.98 93.22 85.35 77.07 89.25 89.46 85.56
IWAN 89.15 99.32 99.36 90.45 95.62 94.26 94.69
SAN 93.90 99.32 99.36 94.27 94.15 88.73 94.96
PADA 86.54 99.32 100.0 82.17 92.69 95.41 92.69
ETN 94.52 100.0 100.0 95.03 96.21 94.64 96.73
CCPDA \ 99.66 100.0 100.0 97.45 95.72 95.71 98.09




Numerical Results

e Experiments on two commonly used datasets: Office-31 and Office-Home.
Office-Home dataset

Accuracy of partial domain adaptation tasks on Office-Home

Method Ar—Cl Ar—Pr Ar—Rw Cl—-Ar Cl—-Pr Cl-Rw Pr—Ar Pr—Cl Pr—Rw Rw—Ar Rw—Cl Rw—Pr Avg
ResNet 46.33 67.51 75.87 59.14 59.94 62.73 58.22 41.79 74.88 67.40 48.18 74.17 61.35
DANN 43.76 67.90 77.47 63.73 58.99 67.59 56.84 37.07 76.37 69.15 44.30 77.48 61.72
ADDA 45.23 68.79 79.21 64.56 60.01 68.29 57.56 38.89 77.45 70.28 45.23 78.32 62.82
RTN 49.31 57.70 80.07 63.54 63.47 73.38 65.11 41.73 75.32 6G3.18 43.57 80.50 63.07
IWAN 53.94 54.45 78.12 61.31 47.95 63.32 5417 52.02 81.28 76.46 56.75 82.90 63.56
SAN 44.42 68.68 74.60 67.49 64.99 77.80 59.78 44.72 80.07 72.18 50.21 78.66 65.30
PADA 51.95 67.00 78.74 52.16 53.78 59.03 52.61 43.22 78.79 73.73 56.60 77.09 62.06
ETN 59.24 77.03 79.54 62.92 65.73 75.01 68.29 55.37 84.37 75.72 57.66 84.54 70.45
CCPDA ‘ 55.31 80.11 88.07 73.28 71.21 77.63 71.89 52.97 81.41 81.81 56.21 85.15 | 72.92




Ablation Study

e Ablation Study shows the benefits brought by different components of our method.

Accuracy of CCPDA and its variants for Partial Domain Adaptation on Office-31 dataset

Method A-W D—-W W=D A-D D—-A WA Avg

CCPDA 95.12 99.32 100.0 93.21  96.03 95.19 | 96.48
CCPDA. 97.45 96.64 100.0 96.47  94.92 93.86 | 96.56
CCPDA, . | 93.42 97.62 100.0 90.43  93.45 95.53 | 95.07

CCPDA ‘ 99.66 100.0 100.0 97.45  95.72 95.71 |98.09




Conclusion

The proposed approach adopts a multi-class adversarial loss function to jointly align the
marginal and class-conditional distributions across the shared classes between the domains.

The regularization terms reduce the effects of outlier classes and can be directly incorpo-
rated into many adversarial architectures.

Experiments on a benchmark dataset demonstrate the high potential of our approach for
different PDA tasks.
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