

Self-Training for Domain Adaptive Scene Text Detection

Yudi Chen^{*1,2}, Wei Wang^{*1,2}, Yu Zhou¹, Fei Yang³, Dongbao Yang¹, Weiping Wang¹ ¹ Institute of Information Engineering, Chinese Academy of Sciences ²University of Chinese Academy of Sciences ³TAL Education Group

*Equally contributed

Wei Wang Date: 15/01/2021

Domain Trouble on Text Detection

- Background
- Language
- Font
- Shape

Related Work

- Weak/semi-supervised methods
 - Still need label
- Data generation methods
 - Not realistic enough
 - Not complicated enough
- Domain adaption methods
 - GA-DAN: Need box annotation[Zhan et al. ICCV'19]
 - Domain adaptation for general object detection
 Not work well on text

SynthText [Gupta et al. CVPR'16] SynthText3D [Liao et al. SCIS]

Self-Training for Domain Adaptive

Detector

Self-Training for Domain Adaptive

Self-Training for Domain Adaptive

Target Domain

Results from previous frame

Results for next frame

Text Mining Module

Detection Results

Text Mining Module

Detection Results

When No Video Available

Ablation study

Train set	Test set	Video	TMM	Balance loss	Precision	Recall	F-measure
VISDT	IC15	×	X	×	54.8	57.7	56.2
		~	×	×	67.7	52.1	58.9
		~	 ✓ 	×	62.3	61.6	61.9
		~	~	~	64.3	61.7	63.0
IC15	IC15	×	X	×	83.0	80.4	81.7
		~	×	×	83.9	81.1	82.5
		~	 ✓ 	×	85.4	81.3	83.3
		~	~	~	87.7	80.3	83.8
VISDT	15VID	×	X	×	49.8	48.0	48.9
		~	×	×	55.7	49.3	52.3
		~	 ✓ 	×	56.3	54.0	55.1
		~	~	~	60.9	53.6	57.0
IC15	15VID	×	X	×	63.5	60.2	61.8
		~	×	×	64.1	60.7	62.4
		~	 ✓ 	×	65.4	60.5	62.9
		✓	 ✓ 	 ✓ 	65.4	61.9	63.6

Baseline detector: Mask RCNN

TMM

works

Comparison with data augmentation

Method	Precision	Recall	F-measure
Mask R-CNN	83.0	80.4	81.7
Mask R-CNN+Ours	87.7	80.3	83.8
Mask R-CNN+Aug	86.1	84.1	85.1
Mask R-CNN+Aug+Ours	89.8	82.5	86.0

Comparison with other video-lacking strategies

Method	Precision	Recall	F-measure
None	54.8	57.7	56.2
Base	62.7	58.9	60.7
Base-Trans	64.1	59.1	61.5
Gen-Straight	64.4	60.0	62.1
Gen-Loop	66.9	64.7	65.8

Comparison with cross domain and data generation methods

Method	Р	R	F
Synthtext3d [19]	64.5	56.7	60.3
GA-DAN [22][AD]	69.9	59.6	64.4
GA-DAN [22][10-AD]	67.3	71.6	69.4
VISDT	54.8	57.7	56.2
VISDT+15VID	64.3	61.7	63.0
VISDT+15VID-2	70.5	64.7	67.5
Synthtext3d [19]	86.6	79.2	82.7
GA-DAN [22][AD]	83.7	79.2	81.4
GA-DAN [22][10-AD]	85.6	81.6	83.5
Target	80.3	81.7	81.0
VISDT→Target	83.0	82.2	82.6
15VID→Target	86.9	81.7	84.2

Comparison with SoTA on ICDAR2015

Method	Ext.	Р	R	F
PAN [32]	-	82.9	77.8	80.3
PSENet [11]	-	81.5	79.7	80.6
Synthtext3d [19]	-	86.6	79.2	82.7
GA-DAN [22]	-	85.6	81.6	83.5
Ours[IC15]	-	80.3	81.7	81.0
Ours[15VID+IC15]	-	85.4	81.3	83.3
Ours[15VID→IC15]	-	86.9	81.7	84.2
MSR [33]	~	86.6	78.4	82.3
Mask TextSpotter [34]	~	85.8	81.2	83.4
FOTS [35]	✓	88.8	82.0	85.3
PSENet-1s [11]	~	86.9	84.5	85.7
BDN [36]	~	89.4	83.8	86.5
SPCNet [37]	~	88.7	85.8	87.2
LOMO [38]	~	91.3	83.5	87.2
GNNets [39]	 ✓ 	90.4	86.7	88.5
Ours[IC15]	✓	88.0	83.9	85.9
$Ours[15VID \rightarrow IC15]$	 ✓ 	88.3	85.7	87.0
Ours[15VID→IC15]+AUG	 ✓ 	91.2	85.4	88.2

13

Before self-training

After self-training

THANKS