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Introduction

• Visual Question Answering (VQA) very challenging deep learning 
application
• Visual attention key part of VQA

oCorrectly identify the region of an image
oRelevant to the question

• Existing methods
o Image analysis on fixed & low-resolution images
o Losing fine-grained details
o Sensitive on object scale



Our proposal

• Reinforcement learning-based active perception approach
• Transformation operations on the images (zoom & translation)
• Allows us to 
• perform fine-grained visual analysis
• effectively increasing the resolution at which the models process information

• Orthogonal to existing attention mechanisms
• Can be combined with existing VQA methods



Virtual camera

• Fixed resolution virtual camera
• Keeping the resolution of the 

image analysis fixed at that
• Not increasing the computational 

cost

a) Fine-grained analysis 
b) Keeping only the information 

relevant to the question
c) Mitigating the effect of object 

scale



The setup (1/3)

• input image: 𝒙 ∈ ℝ!×#×$

• encoded question: 𝒒 ∈ ℝ%!

• training set 
𝒳 = 𝒙&, 𝒒&,, 𝒕& |∀𝑖 = 1,… ,𝑁

• VQA model: 𝑓𝑾 0 ∈ ℝ%"

• 𝑾 = 𝑎𝑟𝑔𝑚𝑖𝑛!
"
#
∑!$"# ℒ 𝑓%& 𝒙! , 𝒒! , 𝒕!

where ℒ ⋅ cross-entropy loss
closed set of 𝑁! possible answers

• action space 𝒜 a set of 7 actions:
• 𝑎"#$%, 𝑎&'()%, 𝑎*+, 𝑎,-./ translation

transformations of the camera by 𝛿0 pixels

• 𝑎1--23'/, 𝑎1--23-*% zooming
transformations of the camera by 𝛿1%

• 𝑎/*"" no transformation

• we aim to learn ℎ𝒘# 𝒙!()), 𝒒! ∈ 𝒜
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The setup (2/3)

• Directly learning 𝑾+ intractable
• Using Reinforcement learning to 

maximize the reward of an agent that 
controls the virtual camera

• Optimization objective: increase the 
probability of the VQA model answering 
correctly

𝑟) = 𝑓𝑾 𝒙!
()), 𝒒! -

− 𝑓𝑾 𝒙!
()."), 𝒒! -

𝑓𝑾 5 - confidence of the correct answer

• Agent network: image analysis, 
question encoding, similarity

• Similarity from image and question
extract an attention-like feature map

𝒖 ∈ ℝ/$×%$
𝒖 !,2 = 8𝒙 !,2

3 𝑾3𝒒 ∈ ℝ&



The setup (3/3)



The frame selection problem

• Agent rewarded for every confidence increasing action to the correct 
answer
• Side effect: sub-optimal final action
• To overcome this: select the answer with highest average confidence
• For 𝑁4control steps
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Experimental setup

• VQA Model: MUTAN
• Agent:
• Image analysis: ResNet-50 (pre-trained)
• Question representation: GRU-based encoder (pre-trained)
• Q-Learning training:

• Rainbow method
• 300,000 steps
• replay memory of 100,000 steps
• 𝛾 = 0.99
• Adam optimizer, learning rate: 0.5× 103<

• 5,000 episodes test from the VQA 2.0 validation set



Experimental results & 
Conclusions

• Active perception approach to 
VQA

• Trained using reinforcement 
learning

• transformations on the input 
images

• Method capable of increasing 
the accuracy of VQA

• High potential: frame selection 
can lead to significant further 
accuracy improvements

Method Accuracy Acc. Gain

Baseline 60.36 -

Proposed (Confident Frame) 59.81 -0.55

Proposed 60.86 0.5

Proposed (Best Frame) 66.68 6.32
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