

Leveraging Quadratic Spherical Mutual Information Hashing for Fast Image Retrieval

N. Passalis and A. Tefas

Presenter: N. Passalis

E-mails: passalis@csd.auth.gr, tefas@csd.auth.gr

Department of Informatics, Aristotle University of Thessaloniki, Thessaloniki, Greece

Deep Supervised Hashing

- **Hashing** provides a way to represent images using compact codes, which allows for performing fast queries in large image databases
- Early hashing methods, e.g., Locality Sensitive Hashing (LSH), focused on extracting generic codes that could, in principle, describe every possible image and information need
- Supervised hashing, which learns hash codes that are tailored to the task at hand, can further improve the retrieval precision

Deep Supervised Hashing

- Many supervised hashing methods have been proposed in recent years
- These methods optimize various proxies for the problem at hand, e.g, pairwise distances between the images, or are based on sampling triplets that must satisfy specific relationships

Motivation

- In this work, we provide additional connections between an informationtheoretic measure, the Mutual Information (MI), and the process of information retrieval
- We argue that mutual information can naturally model the process of information retrieval, providing a solid framework to develop retrieval-oriented supervised hashing techniques
- Even though MI provides a sound formulation for the problem of information retrieval, applying it in real scenarios is usually intractable

Motivation

- Typically, there is no fast way to calculate the actual probability densities, which are involved in the calculation of MI
- The great amount of data as well as their high dimensionality further complicate the practical application of such measures

Proposed Method

- We proposed a deep supervised hashing algorithm that optimizes the learned codes using a variant of an information-theoretic measure, the Quadratic Mutual Information (QMI)
- QMI allows for efficiently estimating MI. However, we further adapt QMI to the needs of supervised hashing by employing a similarity measure that leads to higher precision in retrieval applications, leading to the proposed QSMI formulation using a cosine kernel (for two vectors y₁ and y₂):

$$S_{cos}(\mathbf{y}_1, \mathbf{y_2}) = \frac{1}{2} \left(\frac{\mathbf{y}_1^T \mathbf{y}_2}{\|\mathbf{y}_1\|_2 \|\mathbf{y}_2\|_2} + 1 \right)$$

Proposed Method

• We also propose using a more smooth optimization objective employing a square clamping approach,

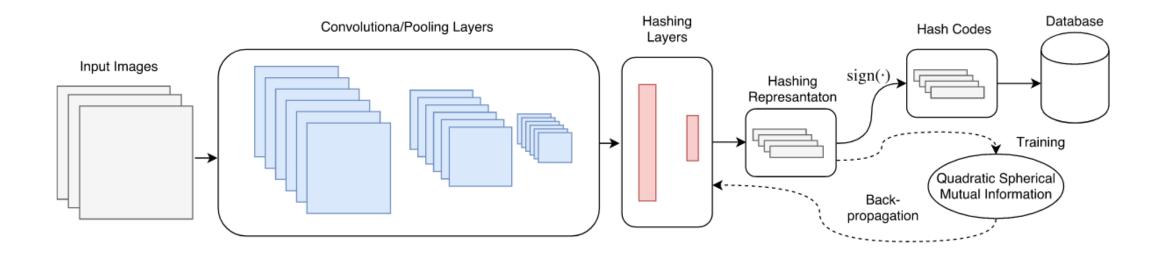
$$I_T^{cos} = \frac{1}{N^2} \mathbf{1}_N^T \left(\mathbf{\Delta} \odot \mathbf{S} - \frac{1}{M} \mathbf{S} \right) \mathbf{1}_N,$$

$$\mathcal{L}_{QSMI} = \frac{1}{N^2} \mathbf{1}_N^T \left(\mathbf{\Delta} \odot (\mathbf{S} - 1) \odot (\mathbf{S} - 1) - \frac{1}{M} (\mathbf{S} \odot \mathbf{S}) \right) \mathbf{1}_N$$

where **S** is the similarity matrix of the data and Δ an appropriately defined index matrix. Note how the employed square clamp alters the optimization objective.

• This allows for significantly **improving the stability of the optimization**, while reducing the risk of converging to bad local minima.

Proposed Method



Experimental Evaluation

TABLE IV
FASHION MNIST EVALUATION (THE MAP FOR DIFFERENT HASH CODE LENGTHS IS REPORTED)

Method	12 bits	24 bits	36 bits
DSH		0.792 ± 0.012	0.809 ± 0.008
DPSH		0.773 ± 0.005	0.774 ± 0.008
QSMIH		0.857 ± 0.004	0.858 ± 0.007

TABLE V
CIFAR10 EVALUATION (THE MAP FOR DIFFERENT HASH CODE LENGTHS
IS REPORTED)

Method	8 bits	12 bits	24 bits	36 bits	48 bits
DSH* DPSH* QSMIH	0.936 0.776	0.958 0.933	0.967 0.971	0.970 0.971	0.970 0.971

CIFAR10 EVALUATION: COMPARISON WITH OTHER STATE-OF-THE-ART APPROACHES (THE MAP FOR DIFFERENT HASH CODE LENGTHS IS REPORTED)

Method	16 bits	32 bits	64 bits	
DNNH	0.555	0.558	0.623	
DSH	0.689	0.691	0.716	
DPSH	0.646	0.661	0.686	
HashNet	0.703	0.711	0.739	
HashGAN	0.668	0.731	0.749	
PGDH	0.736	0.741	0.762	
MIHash	0.760	0.776	0.761	
QSMIH	0.762	0.776	0.780	

NUS-WIDE EVALUATION (THE MAP FOR DIFFERENT HASH CODE LENGTHS IS REPORTED)

Method	8 bits	12 bits	24 bits	36 bits	48 bits
DSH	0.660	0.659	0.671	0.689	0.694
DPSH	0.735	0.748	0.759	0.758	0.755
QSMIH	0.746	0.753	0.766	0.764	0.763

Conclusions

- We proposed a deep supervised hashing algorithm, adapted to the needs of large-scale hashing, which optimizes the learned codes using an informationtheoretic measure, the Quadratic Spherical Mutual Information
- The proposed method was evaluated using three datasets and evaluation setups and compared to other state-of-the-art supervised hashing techniques
- The proposed method outperformed all the other evaluated methods regardless the size of the used dataset and the training setup

Acknowledgements

This project has received funding from the European Union's Horizon 2020 research and innovation programme (OpenDR) under grant agreement No 871449

www.opendr.eu

Thank you!