DEN: Disentangling and Exchanging Network for Depth Completion

You-Feng Wu*, Vu-Hoang Tran†, Ting-Wei Chang‡, Wei-Chen Chiu†, and Ching-Chun Huang‡
• **Intro**
 • Challenges of Depth Estimation
 • Our Setting
 • Overview

• **Previous Works**
 • Depth Representation Related
 • Disentangling Network Related

• **Method**
 • Depth Representation
 • Network Architecture
 • Criterion Design

• **Experiment**
Challenges of Depth Estimation

Monocular Depth Estimation

Challenges
- Spatial Scale Offset
- RGB image texture influence
- Mixed Depth Pixel
Challenges of Depth Estimation

Monocular Depth Estimation

Input

Depth Estimation Model

Alhashim et al.[9]

Ground truth

Challenges

- Spatial Scale Offset
- RGB image texture influence
- Mixed Depth Pixel

Model predicts incorrectly due to scale difference compare to ground truth image.

Challenges of Depth Estimation

Monocular Depth Estimation

Challenges
- Spatial Scale Offset
- RGB image texture influence
- Mixed Depth Pixel

Model is affected by the painting on the wall and predict undesired result.

Input

Alhashim et al.[9] Ground truth

Challenges of Depth Estimation

Monocular Depth Estimation

Challenges
- Spatial Scale Offset
- RGB image texture influence
- Mixed Depth Pixel

Input

Zhang et al.[13]

Ground truth

Undesired prediction between foreground and background

Challenges of Depth Estimation

Monocular Depth Estimation

Challenges
- Spatial Scale Offset
- RGB image texture influence
- Mixed Depth Pixel

We can observe this problem clearer in 3D projection

Our Setting

Motivation
We aim to design an algorithm that can leverage on knowledge of incomplete depth map generated by commercial depth camera for
- More **Accurate** results compare to monocular depth estimation
- More **Practical** than design or purchase a higher-level depth camera for better quality depth map

Depth Completion

Fail Cases of Commercial Depth Camera
- Significant depth difference between foreground and background (A) [24]
- Shiny, bright, transparent (B), and distant surfaces (C) [25]

[25] Reconstructing Scenes with Mirror and Glass Surfaces, TOG, 2018
Our Setting

Depth Completion

Dataset we used

- ScanNet [7]
 - Used on several 3D scene understanding task
 - Provide 1. color image, 2. incomplete depth image, and annotated with 3. ground truth depth and 4. surface normal, etc.
 - Train: 59743 pairs of data from 1000 scenes
 - Test: another 500 pairs from other scenes
Overview

Model Architecture
- Disentangled Representation Learning
- Domain Adaptation
- Feature exchange across domains

Depth Representation
- General Depth Representation
Overview

Model Architecture
- Disentangled Representation Learning
- Domain Adaptation
- Feature exchange across domains

Depth Representation
- General Depth Representation

Challenges
- Spatial Scale Offset
- RGB image texture influence
- Mixed Depth Pixel
Overview

Model Architecture
- Disentangled Representation Learning
- Domain Adaptation
- Feature exchange across domains

Depth Representation
- General Depth Coefficient
Overview

Model Architecture
• Disentangled Representation Learning
• Domain Adaptation
• Feature exchange across domains

Depth Representation
• General Depth Coefficient

Challenges
- Spatial Scale Offset
- RGB image texture influence
- Mixed Depth Pixel
Previous Works
Depth Representation Related

Mixed Depth Pixel
- Many methods model depth estimation as a **regression problem** [12,18,20,35,44], which the model will prefer to generate mixed depth pixel for optimization.

[18] Depth Completion with Deep Geometry and Context Guidance, ICRA, 2019
[35] Dfusenet: Deep fusion of rgb and sparse depth information for image guided dense depth completion, arXiv, 2019
[44] Parse geometry from a line: Monocular depth estimation with partial laser observation, ICRA, 2017
Depth Representation Related

DORN [4]
- Depth Estimation: Regression Problem → Bin Classification Problem
- Loss: MSE/MAE → Cross Entropy

- Quantization Error
- Trade off between memory and precision

Depth Representation Related

DORN [4]
- Depth Estimation: Regression Problem → Bin Classification Problem
- Loss: MSE/MAE → Cross Entropy
- Quantization Error
- Trade off between memory and precision

Imran et al. [22]
- Proposed **Depth Coefficient** representation
- \(d = \alpha \times D_{k-1} + 0.5 \times D_k + \beta \times D_{k+1} \)
Disentangling Network Related

DRIT [41]
- Disentangling feature into **content** and **attribute** domain
- Aligning only **content** domain
- Exchanging **attribute** domain for style transferring

Comparison

![Diagram](image.png)

- **CycleGAN [38]**
- **DRIT [41]**
- **Our**

[38] Unpaired image-to-image translation using cycle-consistent adversarial networks, ICCV 2017
[41] Diverse image-to-image translation via disentangled representations, ECCV 2018
Method
Depth Representation

General Depth Coefficient

- Re-formula depth coefficients [22] based on spacing-increasing discretization (SID) [4]
 - Uniform Discretization (UD) [22]
 \[UD: t_i = d_L + (d_U - d_L) \times \frac{i}{K} \]
 - Spacing Increasing Discretization (SID) [4]
 \[SID: t_i = e^{\log(d_L) + \frac{\log(d_U - d_L) \times i}{\kappa}} \]

Depth Value → Depth Coefficient

\[c_i = \{0, \ldots, 0, \alpha, 0.5, \beta, 0, \ldots, 0\} \]

where \(\alpha = \frac{d_i - 0.5(D_K + D_{K+1})}{D_{K-1} - D_{K+1}} \)
\(\beta = 0.5 - \alpha \)

[22] Depth Coefficients for Depth Completion, arXiv, 2019
Depth Representation

General Depth Coefficient
- Re-formula depth coefficients [22] based on spacing-increasing discretization (SID) [4]
 - Uniform Discretization (UD) [22]
 \[UD: t_i = d_L + (d_U - d_L) \cdot i/K \]
 - Spacing Increasing Discretization (SID) [4]
 \[SID: t_i = e^{\log(d_L) + \frac{\log(d_U - d_L) \cdot i}{K}} \]

Depth Coefficient → Depth Value
Network Architecture
Network Architecture

- Disentangled Representation Learning
- Domain Adaptation
- Feature exchange across domains
Network Architecture

- Disentangled Representation Learning
- Domain Adaptation
- Feature exchange across domains

Fail if force the model to align content domain directly

\[L_{adv}^{content}(D_M) = \mathbb{E}_{C_S} \left[\frac{1}{2} \log(D_M(C_S)) + \frac{1}{2} \log(1 - D_M(C_S)) \right] + \mathbb{E}_{C_T} \left[\frac{1}{2} \log(D_M(C_T)) + \frac{1}{2} \log(1 - D_M(C_T)) \right] \]
Network Architecture

- Disentangled Representation Learning
- **Domain Adaptation**
- Feature exchange across domains

Learn the structural common content from both color and depth domain

The specific information for reconstruction
Network Architecture

- Disentangled Representation Learning
- Domain Adaptation
- Feature exchange across domains
Criterion Design

- L_{rec}
- $G_S(C_S, C_s^S, S_S)$
- L_{dom}
- L_{adv}
- $F_M(C_T)$
- $F_M(C_S)$
- L_{rec}
- L_{cycle}
- L_{mask}
- L_{latent}
- X_S
- E_S^S
- S_S
- G_S
- C_S^S
- C_S^c
- E_S^c
- C_T^c
- C_T^S
- G_T
- X_T
- L_{adv}
- L_{content}
- E_T^c
- E_T^S
- S_T
- $G_T(C_T, C_T^S, S_T)$
Criterion Design

What kind of loss do we need?

- L_{rec}: $l_i^{rec}(m_i, d_i, \hat{d}_i) = -m_i(d_i - \hat{d}_i)^2$
- L_{ce}: $l_i^{ce}(m_i, c_{ij}, \hat{c}_{ij}) = -m_i \sum_{j=1}^{K} c_{ij} \log \hat{c}_{ij}$

Reconstruction Loss
Criterion Design

What kind of loss do we need?

- L_{rec}: $l^{rec}_i(m_i, d_i, \hat{d}_i) = -m_i(d_i - \hat{d}_i)^2$
- L_{ce}: $l^{ce}_i(m_i, c_{ij}, \hat{c}_{ij}) = -m_i \sum_{j=1}^{k} c_{ij} \log \hat{c}_{ij}$

Reconstruction Loss
Surface Normal Loss
What kind of loss do we need?

- L_{rec}: $l_i^{\text{rec}}(m_i, d_i, \hat{d}_i) = -m_i(d_i - \hat{d}_i)^2$
- L_{ce}: $l_i^{\text{ce}}(m_i, c_{ij}, \hat{c}_{ij}) = -m_i \sum_{j=1}^{K} c_{ij} \log \hat{c}_{ij}$

Reconstruction Loss

Surface Normal Loss

Adversarial Loss

$$L_{\text{adv}}(D_M) = \mathbb{E}_{\mathcal{C}_S} \left[\frac{1}{2} \log(D_M(C_S)) + \frac{1}{2} \log(1 - D_M(C_S)) \right] + \mathbb{E}_{\mathcal{C}_T} \left[\frac{1}{2} \log(D_M(C_T)) + \frac{1}{2} \log(1 - D_M(C_T)) \right]$$
Criterion Design

What kind of loss do we need?

- L_{rec}: $l^\text{rec}_i(m_i, d_i, \hat{d}_i) = -m_i(d_i - \hat{d}_i)^2$
- L_{ce}: $l^\text{ce}_i(m_i, c_{ij}, \hat{c}_{ij}) = -m_i\sum_{j=1}^{K} c_{ij}\log \hat{c}_{ij}$

Reconstruction Loss
Surface Normal Loss
Adversarial Loss
Cycle Loss (L2-loss)
Experiment
Results

Comparison

Ours

Zhang et al. [13]

Much Less Mixed Depth Pixel

Example depth completion results on ScanNet test set.

Results

Comparison

Ours

Zhang et al.[13]

Much Less Spatial Scale Offset

Example depth completion results on ScanNet test set.
Results

Comparison

<table>
<thead>
<tr>
<th>Instance</th>
<th>Input</th>
<th>Ground truth</th>
<th>Ours</th>
<th>Zhang et al.[13]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Point cloud visualization of our method and other comparisons. We convert the completed depth into point cloud.

Results

Comparison

<table>
<thead>
<tr>
<th>Obs.</th>
<th>Method</th>
<th>REL ↓</th>
<th>RMSE↓</th>
<th>1.25↑</th>
<th>1.25² ↑</th>
<th>1.25³ ↑</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>Zhang et al.[13]</td>
<td>0.0100</td>
<td>0.0155</td>
<td>0.9213</td>
<td>0.9588</td>
<td>0.9764</td>
</tr>
<tr>
<td></td>
<td>Ours(GDC)</td>
<td>0.0085</td>
<td>0.0132</td>
<td>0.9247</td>
<td>0.9621</td>
<td>0.9794</td>
</tr>
<tr>
<td>Y</td>
<td>Zhang et al.[13]</td>
<td>0.0076</td>
<td>0.0117</td>
<td>0.9588</td>
<td>0.9757</td>
<td>0.9856</td>
</tr>
<tr>
<td></td>
<td>Ours(GDC)</td>
<td>0.0063</td>
<td>0.0096</td>
<td>0.9617</td>
<td>0.9786</td>
<td>0.9877</td>
</tr>
<tr>
<td>N</td>
<td>Zhang et al.[13]</td>
<td>0.0408</td>
<td>0.0637</td>
<td>0.8113</td>
<td>0.9092</td>
<td>0.9492</td>
</tr>
<tr>
<td></td>
<td>Ours(GDC)</td>
<td>0.0386</td>
<td>0.0590</td>
<td>0.8160</td>
<td>0.9134</td>
<td>0.9551</td>
</tr>
</tbody>
</table>

Comparison against state-of-the-art algorithm on ScanNet dataset.
(B: GDT>0, Y: GDT>0 & RAW>0, N: GDT>0 & RAW=0)

Best result show in blue.
Thank You For Listening