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Subspace clustering 

Related Works 

    1) Low Rank Representation (LRR) 

    2) Low Rank Representation on Grassmann Manifolds  (G-LRR) 

     3) Low Rank Representation on Product Grassmann Manifolds 
(PG-LRR) 

Low Rank Representation with Matrix Factorization on 
Product Grassmann Manifolds (PG-MFLRR) 

     

Content 



 Given sufficient data samples drawn from multiple 
low dimensional subspaces: 

     the goal is to group a set of data samples into several 
clusters, which clusters corresponds to the independent 
subspaces. 

Subspace clustering 



 Spectral Clustering (two steps)： 

  Graph construction : construct a graph (i.e., affinity matrix) to 
measure the similarities between data samples; 

 

 

 

 

 

 Spectral clustering  algorithm group the data samples into 
multiple clusters. 

Algorithms 



    The basic assumption: data points are sampled 
from a union of k independent subspaces. 

   Graph construction by low rank representation 

        𝑚𝑖𝑛𝑍  𝑟𝑎𝑛𝑘 𝑍       𝑠. 𝑡.  𝑋 = 𝑋𝑍 

        𝑚𝑖𝑛𝑍  𝑍 ∗     𝑠. 𝑡.  𝑋 = 𝑋𝑍 

        𝑚𝑖𝑛𝑍,𝐸    𝑍 ∗ + 𝛼 𝐸 2,1    𝑠. 𝑡.  𝑋 = 𝑋𝑍 + 𝐸 

  Graph matrix 𝑊 =
𝑍 𝑇+ 𝑍

2
. 

Related Works: LRR 



the high-dimension data in general lie in or close to a low 
dimensional manifold. Thus, extending the LRR based 
methods on the Grassmann manifold for high-dimension data 
clustering with the non-Euclidean geometry. 

Related Works: G-LRR 

           Euclidean Space                                     Grassmann Manifold               



Grassmann manifolds, denoted by  𝒢(𝑝, 𝑑) is the space 
of all 𝑝-dimensional  linear  subspaces of  for 
𝑅𝑑(0 ≤ 𝑝 ≤ 𝑑) .  

Grassmann manifolds can be embedded into the space 
of symmetric matrices 𝑆𝑦𝑚(𝑑) as 

    𝜋: 𝒢 𝑝, 𝑑 → 𝑆𝑦𝑚 𝑑 ,     𝜋 𝑋 = 𝑋𝑋𝑇. 
Replace the distance on Grassmann manifolds with the 

following distance defined on the symmetric matrix 
space 

     𝑑𝒢
2 𝑋, 𝑌 = 

1

2
𝜋 𝑋 − 𝜋 𝑌 𝐹

2  

 
 

Background: Product Grassmann Manifolds 



For a given sample set 𝕏 = 𝑋1, 𝑋2, ⋯ , 𝑋𝑛  where 𝑋𝑖 ∈ 𝒢(𝑝, 𝑑),  
the G-LRR is formulated as : 

𝑚𝑖𝑛𝑍    𝑋𝑖⊝ (⨄𝑗=1
𝑛 𝑧𝑖𝑗⊙𝑋𝑗) 𝒢

+

𝑛

𝑖=1

𝛼 𝑍 ∗ 

where abstract symbols ⊝, ⨄𝑗=1
𝑛 , ⊙denote the ``linear'' 

operations to be defined on manifolds, i.e., addition, 
subtraction and scalar multiplication. 𝑋𝑖⊝ (⨄𝑗=1

𝑛 𝑧𝑖𝑗⊙𝑋𝑗) 𝒢
 

with operator ⊝ representing the product manifold distance 
between 𝑋𝑖 and its reconstruction ⨄𝑗=1

𝑛 𝑧𝑖𝑗⊙𝑋𝑗. 

B. Wang, Y. Hu, J. Gao, Y. Sun and B. Yin. Low Rank Representation on Grassmann 

Manifolds. In ACCV 2014 

Related Works: G-LRR 



Given 𝑉 Grassmann manifolds with dimensions 𝑝1, ⋯ , 𝑝𝑉 
respectively, the Product Grassmann manifolds (PGM) 
(denoted by 𝒫𝒢(𝑑; 𝑝1, ⋯ , 𝑝𝑉)) is defined as  𝒢(𝑝1, 𝑑) ×
⋯× 𝒢(𝑝𝑉 , 𝑑). 

 Then, a point embedded in PGM is a set of Grassmann 
points, denoted by 𝑋 = *𝑋1, ⋯𝑋𝑉+ where 𝑋𝑖 ∈ 𝒢(𝑝𝑖 , 𝑑).  

Related Works: PG-LRR 

             𝒢 𝑝1, 𝑑                               𝒢(𝑝2, 𝑑) 
 



A valid distance on PGM can be induced from the 
individual distance on each Grassmann manifold as 
follows 

 𝑑𝒫𝒢
2 𝑋, 𝑌 =  𝑑𝒢

2(𝑋𝑣, 𝑌𝑣)𝑉
𝑣=1  
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𝒳 = *,𝑋1-,⋯ , ,𝑋𝑛-+be a set of given PGM samples, 

where,𝑋𝑖- = *𝑋𝑖
1, ⋯ , 𝑋𝑖

𝑉+ ∈ 𝒫𝒢(𝑑; 𝑝1, ⋯ , 𝑝𝑉) with 
the basic matrix 𝑋𝑖

𝑣 ∈ 𝒢(𝑝𝑣 , 𝑑). Then, PG-LRR is 
formulated as  

𝑚𝑖𝑛𝑍    ,𝑋𝑖- ⊝ (⨄𝑗=1
𝑛 𝑧𝑖𝑗⊙ ,𝑋𝑗-) 𝒫𝒢

+

𝑛

𝑖=1

𝛼 𝑍 ∗ 

 

Remark: the objective of PG-LRR is convex of Z. 

 
B. Wang, Y. Hu, J. Gao, Y. Sun and B. Yin, Product grassman manifold 

representation and its lrr models. In AAAI, 2016 
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Motivation:  LRR, G-LRR, and PG-LRR directly employ convex 
nuclear norm 𝑍 ∗  to approximate low rank constraint rank(Z), 
which may be a biased estimation of the rank. Despite the 
elegant theory of the convex relaxation of rank(Z),it has two 
major weaknesses: 

1) over-relaxation of  rank components leads to the results 
which can be far from the true underlying ones;  

2) the singular value decomposition (SVD) of matrix has high 
complexity in computation. 

PG-MFLRR 



𝑚𝑖𝑛𝑍    ,𝑋𝑖- ⊝ (⨄𝑗=1
𝑛 𝑧𝑖𝑗⊙ ,𝑋𝑗-) 𝒫𝒢

+

𝑛

𝑖=1

𝛼 𝑀 ∗ 

   𝑠. 𝑡.   𝑍 = 𝑈𝑀𝑉𝑇 , 𝑈𝑇𝑈 = 𝑉𝑇𝑉 = 𝐼𝑘, 

Where the fixed-rank 𝑘 ≪ 𝑛 is a reasonable assumption 
which provides the approximate rather than random upper 
bound for true rank of Z, resulting in a more accurate 
representation. 

PG-MFLRR 



Theorem. A global minimum of non-convex model 
PG-MFLRR can always be obtained. 

  Proof: we can construct the optimal solution skillfully 
according to the optimum of convex model PG-LRR.  

 

Computational complexity analysis 

 PG-LRR: 𝒪(t(2n3)) 

 PG-MFLRR: 𝒪(𝑡(𝑛3 + 3𝑛2𝑘)) 

Theoretical analysis 



     

Experiments: Multi-video clustering 

G-LRR MVGL MCGC SM2SC LCRSR PG-LRR PG-MFLRR 

ACC 0.4541 0.1269 0.1429 0.1463 0.3766 0.4957 0.5098 

NMI 0.5421 0.0492 0.0649 0.0628 0.2397 0.6250 0.6421 

F-score 0.1296 0.1298 0.1445 0.0782 0.2217 0.5102 0.5317 

Table 1. Custering results on ACT4 video database 



     

Experiments: Multi-video clustering 

G-LRR MVGL MCGC SM2SC LCRSR PG-LRR PG-MFLRR 

ACC 0.2904 0.2775 0.2679 0.1100 0.2700 0.2969 0.3560 

NMI 0.2202 0.2024 0.1972 0.0042 0.2078 0.3525 0.3681 

F-score 0.2976 0.2932 0.2710 0.1798 0.0641 0.3017 0.3978 

Table 1. Custering results on NUCLA video database 



     

Experiments: Multi-video clustering 

G-LRR MVGL MCGC SM2SC LCRSR PG-LRR PG-MFLRR 

ACC 0.4196 0.4041 0.4071 0.3835 0.3890 0.4240 0.4945 

NMI 0.4669 0.4831 0.4448 0.4095 0.3740 0.4773 0.5014 

F-score 0.4187 0.4289 0.2710 0.2808 0.3889 0.4268 0.4912 

Table 1. Custering results on IXMAS video database 



     

Experiments: Multi-video clustering 

G-LRR MVGL MCGC SM2SC LCRSR PG-LRR PG-MFLRR 

ACC 0.7802 0.7802 0.9396 0.7637 0.8381 0.8022 1.0000 

NMI 0.6870 0.6870 0.8436 0.5275 0.7237 0.6075 1.0000 

F-score 0.7059 0.7913 0.9393 0.6399 0.7734 0.8014 1.0000 

Table 1. Custering results on DTHC  video database 
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