

Low Rank Representation on Product Grassmann Manifolds for Multi-view Subspace Clustering

Jipeng Guo Beijing University of Technology 2021.1

ICPR2020, Milan, Italy

Co-authers: Yanfeng Sun, Junbin Gao, Yongli Hu, and Baocai Yin

Content

- Subspace clustering
- Related Works
 - 1) Low Rank Representation (LRR)
 - 2) Low Rank Representation on Grassmann Manifolds (G-LRR)
- 3) Low Rank Representation on Product Grassmann Manifolds (PG-LRR)
- Low Rank Representation with Matrix Factorization on Product Grassmann Manifolds (PG-MFLRR)

Subspace clustering

Given sufficient data samples drawn from multiple low dimensional subspaces:

the **goal** is to group a set of data samples into several clusters, which clusters corresponds to the **independent** subspaces.

Algorithms

Spectral Clustering (two steps):

Graph construction : construct a graph (i.e., affinity matrix) to measure the similarities between data samples;

Spectral clustering algorithm group the data samples into multiple clusters.

Related Works: LRR

The basic assumption: data points are sampled from a union of k independent subspaces.

 ➢ Graph construction by low rank representation *min_Z rank(Z) s.t. X* = *XZ min_Z ||Z||*_{*} *s.t. X* = *XZ min_{Z,E} ||Z||*_{*} + α||E||_{2,1} *s.t. X* = *XZ* + E

➢ Graph matrix *W* = $\frac{|Z|^T + |Z|}{2}$.

Related Works: G-LRR

the high-dimension data in general lie in or close to a low dimensional manifold. Thus, extending the LRR based methods on the Grassmann manifold for high-dimension data clustering with the non-Euclidean geometry.

Background: Product Grassmann Manifolds

- Grassmann manifolds, denoted by $\mathcal{G}(p, d)$ is the space of all p-dimensional linear subspaces of for $R^d (0 \le p \le d)$.
- Grassmann manifolds can be embedded into the space of symmetric matrices Sym(d) as

 $\pi: \mathcal{G}(p,d) \to Sym(d), \quad \pi(X) = XX^T.$

Replace the distance on Grassmann manifolds with the following distance defined on the symmetric matrix space

$$d_{\mathcal{G}}^{2}(X,Y) = \frac{1}{2} \|\pi(X) - \pi(Y)\|_{F}^{2}$$

Related Works: G-LRR

For a given sample set $\mathbb{X} = \{X_1, X_2, \dots, X_n\}$ where $X_i \in \mathcal{G}(p, d)$, the **G-LRR** is formulated as :

$$min_Z \sum_{i=1}^n \left\| X_i \ominus \left(\bigcup_{j=1}^n Z_{ij} \odot X_j \right) \right\|_{\mathcal{G}} + \alpha \| Z \|_*$$

where abstract symbols \bigcirc , $\bigcup_{j=1}^{n}$, \bigcirc denote the ``linear'' operations to be defined on manifolds, i.e., addition, subtraction and scalar multiplication. $\|X_i \ominus (\bigcup_{j=1}^{n} z_{ij} \odot X_j)\|_{\mathcal{G}}$ with operator \bigcirc representing the product manifold distance

between X_i and its reconstruction $\bigcup_{j=1}^n z_{ij} \odot X_j$.

B. Wang, Y. Hu, J. Gao, Y. Sun and B. Yin. Low Rank Representation on Grassmann Manifolds. In ACCV 2014

Related Works: PG-LRR

- Solven V Grassmann manifolds with dimensions p_1, \dots, p_V respectively, the Product Grassmann manifolds (PGM) (denoted by $\mathcal{PG}(d; p_1, \dots, p_V)$) is defined as $\mathcal{G}(p_1, d) \times \dots \times \mathcal{G}(p_V, d)$.
- ➤ Then, a point embedded in PGM is a set of Grassmann points, denoted by $[X] = \{X^1, \dots X^V\}$ where $X^i \in \mathcal{G}(p_i, d)$.

Related Works: PG-LRR

A valid distance on PGM can be induced from the individual distance on each Grassmann manifold as follows

$$d_{\mathcal{P}\mathcal{G}}^2(X,Y) = \sum_{\nu=1}^V d_{\mathcal{G}}^2(X^\nu,Y^\nu)$$

Related Works: PG-LRR

 $\mathcal{X} = \{[X_1], \dots, [X_n]\}$ be a set of given PGM samples, where $[X_i] = \{X_i^1, \dots, X_i^V\} \in \mathcal{PG}(d; p_1, \dots, p_V)$ with the basic matrix $X_i^v \in \mathcal{G}(p_v, d)$. Then, PG-LRR is formulated as

$$min_{Z} \sum_{i=1}^{n} \left\| [X_{i}] \ominus \left(\bigcup_{j=1}^{n} Z_{ij} \odot [X_{j}] \right) \right\|_{\mathcal{P}\mathcal{G}} + \alpha \|Z\|_{*}$$

Remark: the objective of PG-LRR is convex of Z.

B. Wang, Y. Hu, J. Gao, Y. Sun and B. Yin, Product grassman manifold representation and its lrr models. In AAAI, 2016

PG-MFLRR

- Motivation: LRR, G-LRR, and PG-LRR directly employ convex nuclear norm $||Z||_*$ to approximate low rank constraint rank(Z), which may be a biased estimation of the rank. Despite the elegant theory of the convex relaxation of rank(Z), it has two major weaknesses:
- 1) over-relaxation of rank components leads to the results which can be far from the true underlying ones;
- 2) the singular value decomposition (SVD) of matrix has high complexity in computation.

PG-MFLRR

$$min_{Z} \sum_{i=1}^{n} \left\| [X_{i}] \ominus \left(\bigcup_{j=1}^{n} Z_{ij} \odot [X_{j}] \right) \right\|_{\mathcal{P}\mathcal{G}} + \alpha \|M\|_{*}$$

s.t. $Z = UMV^{T}, U^{T}U = V^{T}V = I_{k},$

Where the fixed-rank $k \ll n$ is a reasonable assumption which provides the approximate rather than random upper bound for true rank of Z, resulting in a more accurate representation.

Theoretical analysis

Theorem. A global minimum of non-convex model PG-MFLRR can always be obtained.

Proof: we can construct the optimal solution skillfully according to the optimum of convex model PG-LRR.

Computational complexity analysis PG-LRR: $O(t(2n^3))$ PG-MFLRR: $O(t(n^3 + 3n^2k))$

	G-LRR	MVGL	MCGC	SM2SC	LCRSR	PG-LRR	PG-MFLRR
ACC	0.4541	0.1269	0.1429	0.1463	0.3766	0.4957	0.5098
NMI	0.5421	0.0492	0.0649	0.0628	0.2397	0.6250	0.6421
F-score	0.1296	0.1298	0.1445	0.0782	0.2217	0.5102	0.5317

Table 1. Custering results on ACT4 video database

	G-LRR	MVGL	MCGC	SM2SC	LCRSR	PG-LRR	PG-MFLRR
ACC	0.2904	0.2775	0.2679	0.1100	0.2700	0.2969	0.3560
NMI	0.2202	0.2024	0.1972	0.0042	0.2078	0.3525	0.3681
F-score	0.2976	0.2932	0.2710	0.1798	0.0641	0.3017	0.3978

Table 1. Custering results on **NUCLA** video database

	G-LRR	MVGL	MCGC	SM2SC	LCRSR	PG-LRR	PG-MFLRR
ACC	0.4196	0.4041	0.4071	0.3835	0.3890	0.4240	0.4945
NMI	0.4669	0.4831	0.4448	0.4095	0.3740	0.4773	0.5014
F-score	0.4187	0.4289	0.2710	0.2808	0.3889	0.4268	0.4912

Table 1. Custering results on **IXMAS** video database

	G-LRR	MVGL	MCGC	SM2SC	LCRSR	PG-LRR	PG-MFLRR
ACC	0.7802	0.7802	0.9396	0.7637	0.8381	0.8022	1.0000
NMI	0.6870	0.6870	0.8436	0.5275	0.7237	0.6075	1.0000
F-score	0.7059	0.7913	0.9393	0.6399	0.7734	0.8014	1.0000

Table 1. Custering results on **DTHC** video database

Thanks!