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» Subspace clustering
» Related Works

1) Low Rank Representation (LRR)
2) Low Rank Representation on Grassmann Manifolds (G-LRR)

3) Low Rank Representation on Product Grassmann Manifolds
(PG-LRR)

» Low Rank Representation with Matrix Factorization on
Product Grassmann Manifolds (PG-MFLRR)




» Given sufficient data samples drawn from multiple
low dimensional subspaces:

the goal is to group a set of data samples into several
clusters, which clusters corresponds to the independent

subspaces. o \\ /.P
A
I




Spectral Clustering (two steps):

» Graph construction : construct a graph (i.e., affinity matrix) to
measure the similarities between data samples;

» Spectral clustering algorithm group the data samples into
multiple clusters.




The basic assumption: data points are sampled
from a union of k independent subspaces.

» Graph construction by low rank representation
min, rank(Z) s.t. X =XZ
min, ||Z||. s.t. X =XZ
mingg |Z|, + allEll,, s.t. X =XZ+E

1Z|T+|z]
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» Graph matrix W =




the high-dimension data in general lie in or close to a low
dimensional manifold. Thus, extending the LRR based
methods on the Grassmann manifold for high-dimension data
clustering with the non-Euclidean geometry.

Euclidean Space Grassmann Manifold




» Grassmann manifolds, denoted by G(p, d) is the space
of all p-dimensional linear subspaces of for
RI(0<p<d).

» Grassmann manifolds can be embedded into the space
of symmetric matrices Sym(d) as

T:G(p,d) » Sym(d), n(X)=XX".

» Replace the distance on Grassmann manifolds with the
following distance defined on the symmetric matrix
space

d2(X,Y) == [lm(X) —n(V)|?




For a given sample set X = {X, X5, -+, X,,} where X; € G(p, d),
the G-LRR is formulated as :
n

min Enxi © (U2 O X)|| +alZIl.

where abstract symbols O, U] 1, ©denote the “linear"
operations to be defined on manifolds, i.e., addition,
subtraction and scalar multiplication. HXl- O (Wiz1z;; O Xj)Hg

with operator © representing the product manifold distance
between X; and its reconstruction Wi, z; O X;.
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» Given IV Grassmann manifolds with dimensions py, -+, Dy
respectively, the Product Grassmann manifolds (PGM)

(denoted by PG (d; p4, -+, py)) is defined as G(p4,d) X
X G(py, d).

» Then, a point embedded in PGM is a set of Grassmann
points, denoted by [X] = {X1,--- XV} where X' € G(p;, d).

G(py,d) G(p2, d)




> A valid distance on PGM can be induced from the
individual distance on each Grassmann manifold as
follows

d5:(X,Y) = Yp-1 dE(XV, YY)




= {[X4], -+, | X},]}be a set of given PGM samples,
where[ =X, X'} € PG(d; py, -, py) With
the basic matrix X;” € G(p,,, d). Then, PG-LRR is
formulated as

min, zu 10 U2 O (XD, +aliZIl.

Remark: the objective of PG-LRR is convex of Z.
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Motivation: LRR, G-LRR, and PG-LRR directly employ convex
nuclear norm ||Z||, to approximate low rank constraint rank(Z),
which may be a biased estimation of the rank. Despite the
elegant theory of the convex relaxation of rank(Z),it has two
major weaknesses:

1) over-relaxation of rank components leads to the results
which can be far from the true underlying ones;

2) the singular value decomposition (SVD) of matrix has high
complexity in computation.




min, ZH 1© (Wio,12; O [X )H +aIIM||*

s.t. Z = UMVT, vtu =vtv =1,

Where the fixed-rank k < n is a reasonable assumption

which provides the approximate rather than random upper
bound for true rank of Z, resulting in a more accurate
representation.




Theorem. A global minimum of non-convex model
PG-MFLRR can always be obtained.

Proof: we can construct the optimal solution skillfully
according to the optimum of convex model PG-LRR.

Computational complexity analysis
PG-LRR: O(t(2n?))
PG-MFLRR: O(t(n3 + 3n°k))




G-LRR MVGL MCGC SM2SC LCRSR PG-LRR | PG-MFLRR
ACC 0.4541 0.1269 0.1429 0.1463 0.3766 0.4957 0.5098
NMI 0.5421 0.0492 0.0649 0.0628 0.2397 0.6250 0.6421
F-score 0.1296 0.1298 0.1445 0.0782 0.2217 0.5102 0.5317

Table 1. Custering results on ACT4 video database




G-LRR MVGL MCGC SM2SC LCRSR PG-LRR | PG-MFLRR
ACC 0.2904 0.2775 0.2679 0.1100 0.2700 0.2969 0.3560
NMI 0.2202 0.2024 0.1972 0.0042 0.2078 0.3525 0.3681
F-score 0.2976 0.2932 0.2710 0.1798 0.0641 0.3017 0.3978

Table 1. Custering results on NUCLA video database




G-LRR MVGL MCGC SM2SC LCRSR PG-LRR | PG-MFLRR
ACC 0.4196 0.4041 0.4071 0.3835 0.3890 0.4240 0.4945
NMI 0.4669 0.4831 0.4448 0.4095 0.3740 0.4773 0.5014
F-score 0.4187 0.4289 0.2710 0.2808 0.3889 0.4268 0.4912

Table 1. Custering results on IXMAS video database




G-LRR MVGL MCGC SM2SC LCRSR PG-LRR | PG-MFLRR
ACC 0.7802 0.7802 0.9396 0.7637 0.83381 0.8022 1.0000
NMI 0.6870 0.6870 0.8436 0.5275 0.7237 0.6075 1.0000
F-score 0.7059 0.7913 0.9393 0.6399 0.7734 0.8014 1.0000

Table 1. Custering results on DTHC video database
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