Adaptive Graph Convolutional Networks with Attention Mechanism for Relation Extraction

Zhixin Li, Yaru Sun, Suqin Tang, Canlong Zhang, Huifang Ma Guangxi Normal University

CONTENTS

·Introduction

Oual Attention-Guided GCN

Position Attention ModualRelation Attention ModuleClassification Reinforcement Modual

•Experiments

. Conclusion

Introduction

The sequence-based model

It operate on word sequences, for example, using cyclic neural networks to encode words to obtain the sentence information.

The dependency-based model

It incorporate the dependency tree of the sentence relationship and effectively use the structural information in the dependency tree to extract features.

Fig.1 Relation extraction of a plain text.

Dual Attention-Guided GCN

Relation Attention Module

Fig. 2. The DAGCN model.

Dual Attention-Guided GCN

Fig. 3 The position attention module.

Dual Attention-Guided GCN

Fig. 4 The relation attention module.

Classification Reinforcement Module

We use distributional reinforcement learning to optimize the representation of relationship features.

$$r_{ij} = FFNN(h_{ei}, h_{ej}, h_{sent})$$

$$h_{sent} = f(B')$$

$$\mathbb{P}(r_{ij} \mid h_{ei}, h_{ej}, h_{sent}) = soft \max(MLP(r_{ij}))$$

$$Q(h,r) = \mathbb{E}R(h,r) + \gamma \mathbb{E}Q(h',r')$$

$$Z(h,r) = R(h,r) + \gamma Z(h',r')$$

$$\mathcal{L} = \sum_{s \in S} \sum_{i \neq j} \log Z(h, r_{ij} \mid i, j, s)$$

Experiments

TABLE I RESULTS ON TACRED DATASETS.

Model	Р	R	F1
LR [2]	73.5	49.9	59.4
SDP-LSTM [20]	66.3	52.7	58.7
Tree-LSTM [21]	66.0	59.2	62.4
PA-LSTM [2]	65.7	64.5	65.1
GCN [6]	69.8	59.0	64.0
C-GCN [6]	69.9	63.3	66.4
AGGCN [9]	69.9	60.9	65.1
C-AGGCN [9]	71.8	66.4	69.0
DAGCN(ours)	70.1	63.5	66.8
C-DAGCN(ours)	72.6	68.7	70.6

TABLE IIResults on SemEval datasets.

Model	F1
SVM [22]	82.2
SDP-LSTM [20]	83.7
SPTree [8]	84.4
PA-LSTM [2]	82.7
C-GCN [6]	84.8
C-AGGCN [9]	85.7
C-DAGCN(ours)	86.9

Experiments

Hwang, architect of the Pyongyang regime's ideology of juche, was onec secretary of the ruling workers' Party and a tutor to current leader.

Fig. 5. Visualization of node association.

Experiments

Fig. 6. Visualization of entity relationship classification.

Conclusion

Our contributions are summarized as follows.

We propose a dual attention graph neural network. By capturing a long-range of contextual dependency information and improves the discriminate ability of feature representations in relation extraction.

We propose a position attention module to learn the spatial correlation of features and also propose a relation attention module to capture the dependency information between nodes.

We propose a classification reinforcement module to optimize the representation of relationship features and improve the accuracy of relationship classification.

Our model achieved the new state-of-the-art performance on the TACRED and SemEval datasets.

Thank you.