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Subspace clustering

Data X lies in a union of low-dimensional subspaces UF_,S;

The goal of subspace clustering : Grouping data belonging to
the same subspace (cluster).

Representation-based subspace clustering
mén |X — XC||% + f(C), s.t. diag(C) =0
f(C)=||C|l, Sparse Subspace Clustering (SSC) [Elhamifar and Vidal, 2009]
f(C) =||C]||« Low Rank Representation (LRR) [Liu et al., 2012]

f(C) =|CJ||% Least Square Regression (LSR) [Lu et al., 2012]

Find self-representation on the whole data




Large-scale Subspace clustering

Scalable Framework for Representation-based subspace clustering [Peng et al., 2016]
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Elastic Net Subspace Clustering (EnSC) [You et al., 2015]
Landmark-based Clustering (LSC) [Cai and Chen, 2015]
Scalable and robust SSC (SR-SSC) [Abdolali et al., 2019]

Find self-representation on a small subset of data




Optimal Direction Search [Rahmani and Atia, 2017]

It searches for an optimal direction d; € RM*! for each
data point x; by minimizing its projections on all data points
except x;

mﬁiﬁn ld" X ||, st d'z;=1
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Large coherence with data in the same subspace

Find directions on the whole data
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Do we need to compute the direction using all the data?

Use subset X  d; = argmin||d” X ||, st d7&; =1
d Coherence is highly preserved
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Computed d;, d; (left) and corresponding |d? X| , |d? X] (right) using full data (blue) and 20% of the data (red)

Find directions on a small subset of data

Also, the direction search is friendly to out-of-sample data...
For a data point by, its cluster label can be obtained using |b; D|




Theoretical analysis

Proposition.1 Defining d,» = arg dg,ninl ld” X ||1, if the following conditions are satisfied
zCs,

(1) Z v x| + Z vl ;| > Z sgn(xldy,)vT x;

x,eX 1 @, X x,eXI
ic1g

(2) 8 £85.j € [k]

IU = {1 S [ﬂ‘.'}'} : w.i]."dop = U €x; € X]}

v—an arbitrarily small vector satisfying v’z = (

(3) M > ri.j € [K] M —ambient dimension 7;—dimension of S;

Then we have do,.€ S, ¢<=>|d5X 7 =0

According to Theorem 1, for a subset X , we have

dop—argdmlg 1d' x|, = dOPX i— 0 T
ﬂi‘éBS X i — X-_JC 7 dOPX — d()pX C —

self-representation

AT
We can find correct neighborhoods with |doX |




Framework of Fast Direction Search-Based Subspace Clustering (Fast DiSC)

Direction Search in Data Partitions (DiSPart)
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Experiment on synthetic data

X lies in U¥_,S;
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Average clustering error as function of the dimension of the intersection y. Left: noiseless (¢ = 0) on whole process.
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Experiment on real datasets
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Experiment results on real Datasets

Dataset  Evaluation OMP  SSSC  SLRR SR-SSC ORGEN FastDiSC  Fast DISC  Fast DISC | o LRR  DSC
(s1,0.2) (52,0.5) (s3,1)
Acc(%) 7190  59.67 5643  71.03 60.90 50.48 78.00 90.30 6759 7343 91.89
ExYale B NMI(%) 7931 6622 6760 7684 7095 58.97 79.82 92.20 7308 8311  93.53
Time(s) 1159 2596 3287 3568  44.39 436 19.87 29.86 12467 6606  77.34
Acc(%) 1977 4518 4782 6662 4892 70.01 74.17 77.53 4856 5577 6470
USPS NMI(%) 687 5247 5248  68.02 56.70 69.77 73.11 78.24 5877 6179 78.59
Time(s) 1152 7141 2296  76.19 78.70 411 6.88 13.31 388129 38580  1379.79
Acc(%) 4626 8508 8375  83.63 93.79 89.82 87.89 98.03 - ] ]
MNIST ~ NMI(%) 5155 8733 8713  83.38 88.80 86.37 87.42 94.67 ] ] ]
Time(s) 69541 71347 19437 126506 95922 107.36 27029 705.82 . . ]

Fast DiSC(s,6):  s-number of partitions  #-sampling rate (i.e., N, = |#N]) in DiSPart

&
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Summary of contribution of the work

(1)We develop Fast DISC for large-scale subspace clustering, which consists of two newly
proposed procedures DiSPart and ReDiP.

(2)We provide theoretical analysis for direction search, showing that a small part of the data
generally suffices to identify correct neighborhood sets for the data points in their corresponding
subspaces.

(3)We present experimental results with comparisons to state-of-the-art algorithms on both
synthetic and real data, demonstrating the superior performance of the Fast DiSC.
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Thank you!




