Scalable Direction-Search-Based Approach to Subspace Clustering

Yicong He and George K. Atia Department of Electrical and Computer Engineering, University of Central Florida

Yicong.He@ucf.edu, George.Atia@ucf.edu

Subspace clustering

Data X lies in a union of low-dimensional subspaces $\cup_{i=1}^k S_i$

The goal of subspace clustering : Grouping data belonging to the same subspace (cluster).

Representation-based subspace clustering

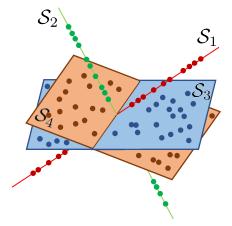
$$\min_{\mathbf{C}} \|\mathbf{X} - \mathbf{X}\mathbf{C}\|_F^2 + f(\mathbf{C}), \text{ s.t. } \operatorname{diag}(\mathbf{C}) = 0$$

 $f(\mathbf{C}) = \|\mathbf{C}\|_1$ Sparse Subspace Clustering (SSC) [Elhamifar and Vidal, 2009]

 $f(\mathbf{C}) = \|\mathbf{C}\|_*$ Low Rank Representation (LRR) [Liu et al., 2012]

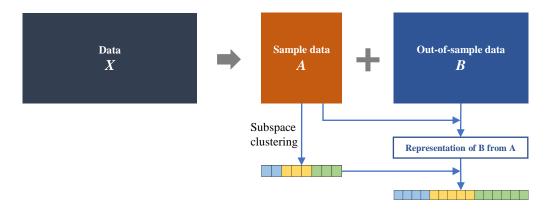
 $f(\mathbf{C}) = \|\mathbf{C}\|_F^2$ Least Square Regression (LSR) [Lu et al., 2012]

Find self-representation on the whole data



Large-scale Subspace clustering

Scalable Framework for Representation-based subspace clustering [Peng et al., 2016]



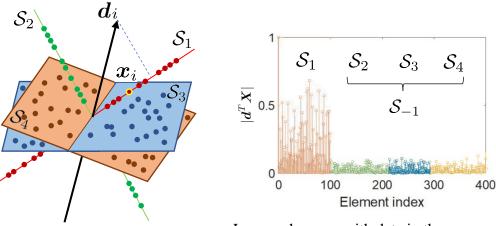
Elastic Net Subspace Clustering (EnSC) [You et al., 2015] Landmark-based Clustering (LSC) [Cai and Chen, 2015] Scalable and robust SSC (SR-SSC) [Abdolali et al., 2019]

Find self-representation on a small subset of data

Optimal Direction Search [Rahmani and Atia, 2017]

 $\min_{\boldsymbol{d}} \|\boldsymbol{d}^T \boldsymbol{X}\|_p$ s.t. $\boldsymbol{d}^T \boldsymbol{x}_i = 1$

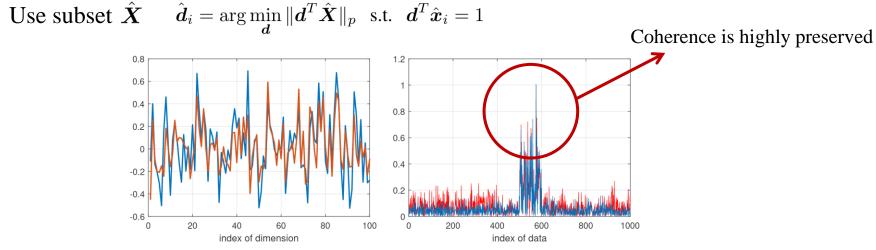
It searches for an optimal direction $d_i \in \mathbb{R}^{M \times 1}$ for each data point x_i by minimizing its projections on all data points except x_i



Large coherence with data in the same subspace

Find directions on the whole data

Do we need to compute the direction using all the data?



Computed d_i , \hat{d}_i (left) and corresponding $|d_i^T X|$, $|\hat{d}_i^T X|$ (right) using full data (blue) and 20% of the data (red)

Find directions on a small subset of data

Also, the direction search is friendly to out-of-sample data... For a data point \boldsymbol{b}_i , its cluster label can be obtained using $|\boldsymbol{b}_i^T \boldsymbol{D}|$

Theoretical analysis

Proposition.1 Defining
$$d_{op} = \arg \min_{\substack{d^T x \equiv 1 \\ x \in S_j}} \|d^T X\|_1$$
, if the following conditions are satisfied

$$(1) \sum_{\substack{x_i \in \mathbf{X}^{-j} \\ i \in I_0}} |v^T x_i| + \sum_{\substack{x_i \in \mathbf{X}^j \\ i \in I_0}} |v^T x_i| > \sum_{\substack{x_i \in \mathbf{X}^j \\ x_i \in \mathbf{X}^j}} \operatorname{sgn}(x_i^T d_{op}) v^T x_i \quad I_0 = \{i \in [n_j] : x_i^T d_{op} = 0, x_i \in \mathbf{X}^j\} \\ v - \text{an arbitrarily small vector satisfying } v^T x = 0$$

$$(2) \quad S_j \nsubseteq S_{-j}, j \in [k]$$

$$(3) \quad M \gg r_j, j \in [k] \quad M - \text{ambient dimension} \quad r_j - \text{dimension of } S_j$$
Then we have $d_{op} \in S_{-j}^{\perp} \iff d_{op}^T \mathbf{X}^{-j} = \mathbf{0}$

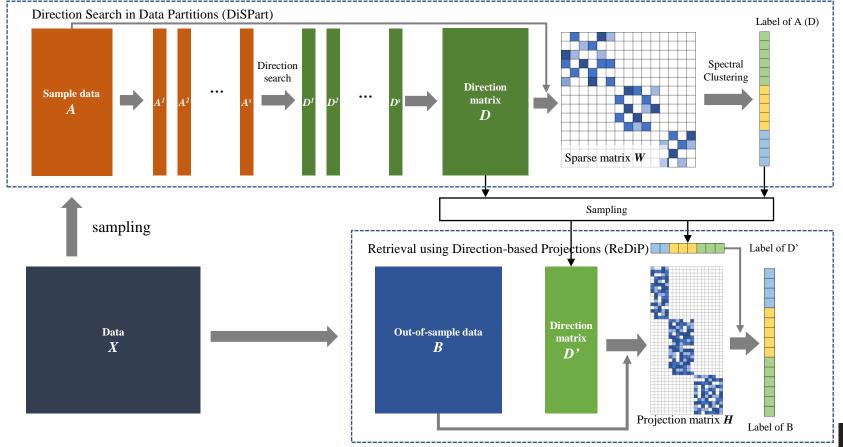
According to Theorem 1, for a subset \hat{X} , we have

$$\hat{d}_{oP} = \arg\min_{\substack{\boldsymbol{d}^{T}\boldsymbol{x} = 1\\\boldsymbol{x} \in \mathcal{S}_{j}}} \|\boldsymbol{d}^{T}\hat{\boldsymbol{X}}\|_{1} \iff \hat{\boldsymbol{d}}_{oP}^{T}\hat{\boldsymbol{X}}^{-j} = \mathbf{0}$$

$$X^{-j} = \hat{\boldsymbol{X}}^{-j}\boldsymbol{C}^{-j} \Longrightarrow \hat{\boldsymbol{d}}_{oP}^{T}\boldsymbol{X}^{-j} = \hat{\boldsymbol{d}}_{oP}^{T}\hat{\boldsymbol{X}}^{-j}\boldsymbol{C}^{-j} = \mathbf{0}$$

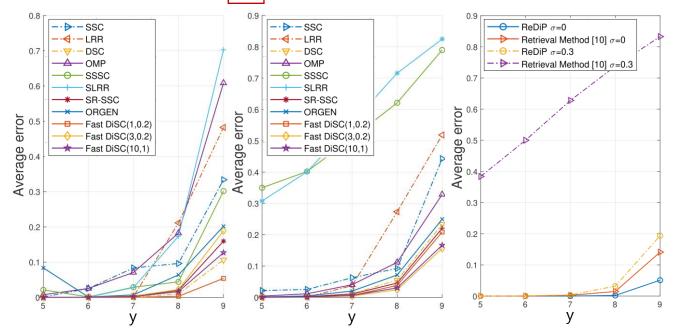
$$\stackrel{\text{self-representation}}{\text{self-representation}} \Longrightarrow \hat{\boldsymbol{d}}_{oP}^{T}\boldsymbol{X}^{-j} = \hat{\boldsymbol{d}}_{oP}^{T}\hat{\boldsymbol{X}}^{-j}\boldsymbol{C}^{-j} = \mathbf{0}$$
We can find correct neighborhoods with $|\hat{\boldsymbol{d}}_{oP}^{T}\boldsymbol{X}|$

Framework of Fast Direction Search-Based Subspace Clustering (Fast DiSC)



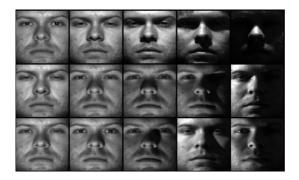
Experiment on synthetic data

X lies in $\bigcup_{i=1}^k S_i = \mathcal{R}_i \oplus \mathcal{M}$ y-dimensional subspace shared by all subspaces



Average clustering error as function of the dimension of the intersection y. Left: noiseless ($\sigma = 0$) on whole process. Middle: noisy ($\sigma = 0.3$) on whole process. Right: Retrieval performance comparison only.

Experiment on real datasets



Extended Yale B

38 subjects 2432 images

USPS

10 subjects 9298 images

MNIST

9

888

9

۹

10 subjects 70000 images

Experiment results on real Datasets

Dataset	Evaluation	OMP	SSSC	SLRR	SR-SSC	ORGEN	Fast DiSC (<i>s</i> 1,0.2)	Fast DiSC (s ₂ ,0.5)	Fast DiSC (s ₃ ,1)	SSC	LRR	DSC
ExYale B	Acc(%)	71.90	59.67	56.43	71.03	60.90	50.48	78.00	90.30	67.59	73.43	91.89
	NMI(%)	79.31	66.22	67.60	76.84	70.95	58.97	79.82	92.20	73.08	83.11	93.53
	Time(s)	11.59	25.96	32.87	35.68	44.39	4.36	19.87	29.86	124.67	66.06	77.34
USPS	Acc(%)	19.77	45.18	47.82	66.62	48.92	70.01	74.17	77.53	48.56	55.77	64.70
	NMI(%)	6.87	52.47	52.48	68.02	56.70	69.77	73.11	78.24	58.77	61.79	78.59
	Time(s)	11.52	71.41	22.96	76.19	78.70	4.11	6.88	13.31	3881.29	385.80	1379.79
MNIST	Acc(%)	46.26	85.08	83.75	83.63	93.79	89.82	87.89	98.03	-	-	-
	NMI(%)	51.55	87.33	87.13	83.38	88.80	86.37	87.42	94.67	-	-	-
	Time(s)	695.41	713.47	194.37	1265.06	959.22	107.36	270.29	705.82	-	-	-

Fast DiSC(s, θ): s-number of partitions θ -sampling rate (i.e., $N_1 = \lfloor \theta N \rfloor$) in DiSPart

Summary of contribution of the work

(1)We develop Fast DiSC for large-scale subspace clustering, which consists of two newly proposed procedures DiSPart and ReDiP.

(2)We provide theoretical analysis for direction search, showing that a small part of the data generally suffices to identify correct neighborhood sets for the data points in their corresponding subspaces.

(3)We present experimental results with comparisons to state-of-the-art algorithms on both synthetic and real data, demonstrating the superior performance of the Fast DiSC.

Thank you!

