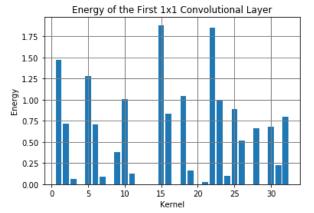
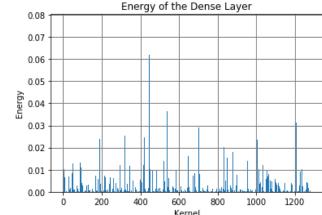
Fourier Domain Pruning of MobileNet-V2 with Application to Video Based Wildfire Detection

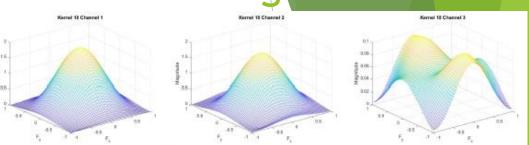
Hongyi Pan, Diaa Badawi, Ahmet Enis Cetin Electrical and Computer Engineering University of Illinois at Chicago

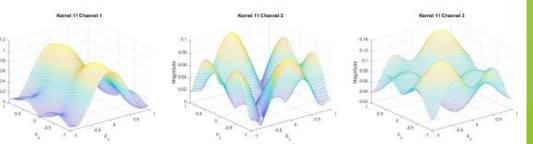
Outline

- MobileNet-V2 for Wildfire Detection
- Fourier Transform Based Neural Network Pruning
- Block-Based Image Frame Analysis
- Experimental Results: Neural Network Performance
- Conclusion

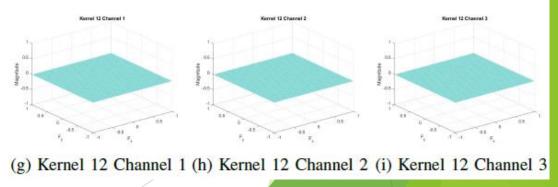

MobileNet-V2 for Wildfire Detection

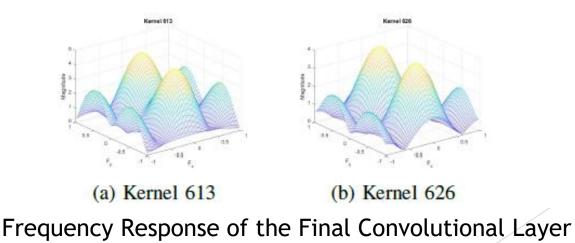

- MobileNet-V2: A mobile CNN model published in 2018.
- We totally have about 10K training images:
 - 3K wildfire images.
 - All images are resized into 224x224.
- We will use NVIDIA Jetson Nano in our wildfire detection system.



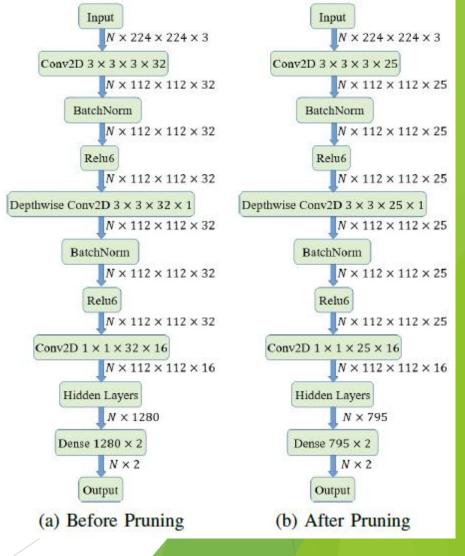

Fourier Transform Based Neural Network Pruning

- Goal: Make the network smaller and faster.
- We extract 3x3 convolution kernel weights and calculate their Fourier Transforms (FT).
- We remove similar filters according to their FT (a) Kernel 10 Channel 1 (b) Kernel 10 Channel 2 (c) Kernel 10 Channel 3 magnitudes.
- We notice that some kernels have nearly 0-response, so we remove them from the graph.
- We also eliminate those kernels with low energy at the 1x1 convolutional layers and the dense layer.




(d) Kernel 11 Channel 1 (e) Kernel 11 Channel 2 (f) Kernel 11 Channel 3

Frequency Response of the First Convolutional Layer


Fourier Transform Based Neural Network Pruning

- We perform 64x64 FT and check their cosine similarity:
- Filter similarity = $cos(\theta) = \frac{\langle X, Y \rangle}{||X|| \cdot ||Y||}$ where **X** and **Y** are the Fourier transform magnitudes of the two filters in vector form, respectively.
- We treat the kernels with similarity larger than 0.99925 as a pair of similar kernels and store only one of them. This value is chosen based on no-fire video test experiment.
- In this way, 22.91% kernels are removed.


Fourier Transform Based Neural Network Pruning

- A kernel with its shifted kernel may have a small cosine similarity in time-domain but their FT magnitudes will produce a $\cos(\theta) = 1$ or -1.
- By running the inference 100 times and calculate the average time consuming on the computer, we find that it takes 0.499921 second before pruning, and takes 0.464778 second after pruning.
- 7.04% time saving is achieved by pruning these layers.

Block-Based Image Frame Analysis

- Problem: In real time application, input frames are in 1080P or higher resolution, but the input of the network is 224x224. We may miss very small smoke regions, if we just down-sample the frames.
- We divide a frame into many small tiles.
- We have overlapping tiles.

- The High Performance Wireless Research and Education Network (HPWREN), a University of California San Diego partnership project led by the San Diego Supercomputer Center and the Scripps Institution of Oceanography's Institute of Geophysics and Planetary Physics, supports Internet-data applications in the research, education, and public safety realms.
- Dataset: https://hpwren.ucsd.edu/

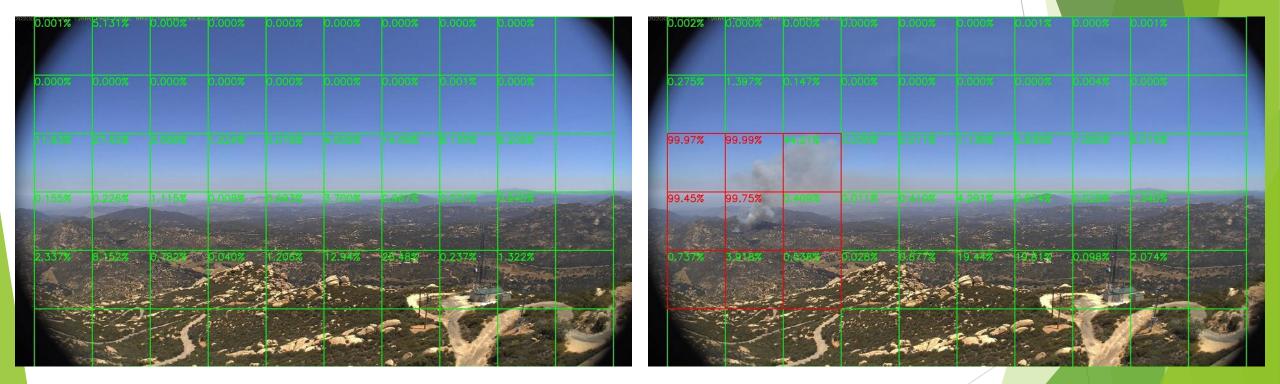
Videos Name	Fire Starts	First Detected					
		Fourier	Time	No			
		Domain	Domain	Pruning			
		Pruning	Pruning				
Lyons Fire	156	164	168	164			
Holy Fire East View	721	732	738	732			
Holy Fire South View	715	725	725	724			
Skylinefire	684	690	690	690			
Palisades Fire	636	639	640	639			
Palomar Mountain Fire	262	277	279	275			
Banner Fire	15	17	20	17			
Highway Fire	4	6	6	6			
DeLuz Fire	37	48	51	48			

TABLE II: Daytime Fire Video Result of HPWREN Database

Threshold	1 Not		Nonea	99925ª	0.	99900	0.99500		
Slimming Ra	ate	(0.00%	2	2.91%	24.90%		4	7.27%
Videos Name	Frames	Num	Rate (%)	Num	Rate (%)	Num Rate (%)		Num	Rate (%)
wilson-w-mobo-c ^b	10080	2	0.0198	2	0.0198	5	0.0496	63	0.6250
wilson-s-mobo-c	10074	2	0.0199	2	0.0199	2	0.0199	69	0.6849
wilson-n-mobo-c ^b	10024	3	0.0299	3	0.0299	4	0.0399	71	0.7083
wilson-e-mobo-cc	10028	43	0.4288	43	0.4288	43	0.4288	104	1.0371
vo-w-mobo-c	10009	5	0.0500	5	0.0500	5	0.0500	64	0.6394
69bravo-e-mobo-c	1432	1	0.0698	1	0.0698	1	0.0698	11	0.7682
69bravo-e-mobo-c	1432	0	0.0000	0	0.0000	0	0.0000	9	0.6285
syp-e-mobo-c	1421	3	0.2111	3	0.2111	3	0.2111	13	0.9148
sp-n-mobo-c	1252	2	0.1597	2	0.1597	2	0.1597	12	0.9585
sp-w-mobo-c ^b	1282	1	0.0780	1	0.0780	2	0.1560	8	0.6240
sp-s-mobo-c	1272	2	0.1572	2	0.1572	2	0.1572	8	0.6289
sp-e-mobo-c	1278	2	0.1565	2	0.1565	2	0.1565	10	0.7825
aWa ast some false alarm result before and often remains and alimming in threshold of 0,00025									

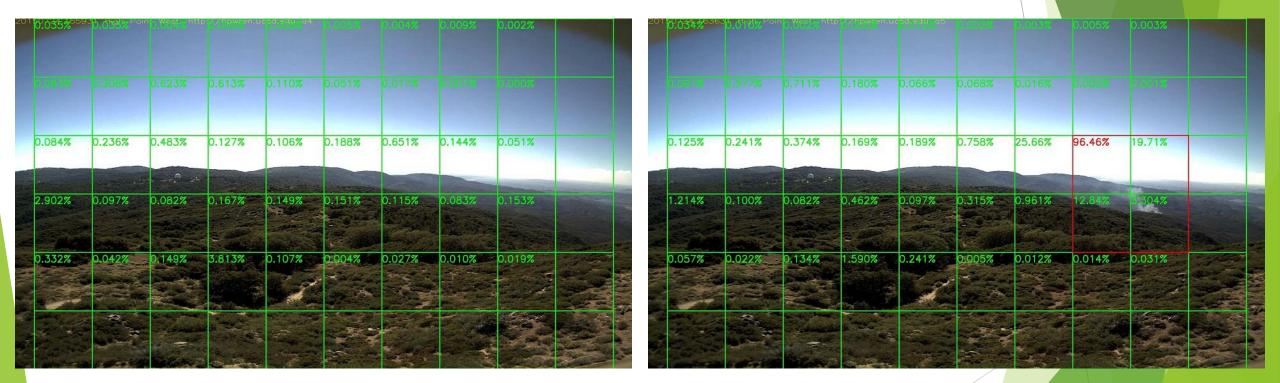
^aWe get same false-alarm result before and after pruning and slimming in threshold of 0.99925.

^bWith lower the slimming threshold (0.99900), the false-alarm rate increases on these videos.


^cThere is an unexpected long light shown in Fig.18b.

These lasts

TABLE III: False-Alarm Result on No-Fire Videos of HPWREN Database


0.0050(

Skylinefire north of Lyons Peak, 06/11/2020

0.051%	0.025%	0.001%	0.003%	0.02×2	D.008%	0.025%	0.006%	10080%	0.112%	0.014%	4.001%	0.000%	0.0042	0.003%	0.004%	0.009%		
0.072%	0.032	0.000%	0.002%					DUDAN	0.115%	0.030	0.000%					0.002%		
0.049%	0029%					0.260%	0,106%	0.0463	0.039%	55%	98.64%	1.122.3	3,1225		0.400%	0.277%	0.087%	
1.4177%	0.6528	0.033%	3.766%	2.568%	1.422%	0.793%	0.050%	0.089%	0.671%	515287	1.680%	3.887%	3.532%	1.280%	0.723%	0.122%	0.165%	
0.282%	0.926%	0.248%	0.248%	2.096%	5.360%	2.574%	4.459%	1.427%	0.082%	0.871%	0.347%	0.455%	5.304%	1.424%	0.868%	24.08%	0.972%	

Palisades fire, 10/21/2019

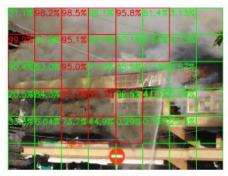
Palomar Mountain fire, 07/24/2015

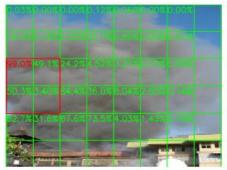
Neural Network Performance: BoWFire

TABLE IV: Result of BoWFire Dataset

Method	Detection	False-Alarm	Accuracy		
	Rate	Rate			
Muhammad et al. [30]	97.48%	18.69%	89.82%		
Muhammad et al. [31]	93.28%	9.34%	92.04%		
Chaoxia et al. [32]	92.44%	5.61%	93.36%		
Our Method	91.60%	4.67% ^a	93.36%		

^a There are two smoke images labeled as no-fire as shown in Figure 20. Our method managed to detect them, but we still count them as false-alarm cases here for comparison because they are not discussed in [30]–[32]. If we count them as true-detected cases, then our three rates are 91.74%, 2.80% and 94.25%, respectively. Besides, as it is stated at the beginning of SectionIV-A, we sacrificed detection rate to gain false-alarm rate. Therefore, although our detection rate is lower than [30]–[32], our accuracy reaches the highest.





(a) Fire image No.34

(b) No-fire image No.98

Fig. 19: Test result on the BoWFire dataset.

(a) No-Fire Image No.63

(b) No-Fire Image No.64

Fig. 20: Two smoke images in the BoWFire no-fire test dataset.

Dataset: https://bitbucket.org/gbdi/bowfire-dataset/downloads/

Conclusion

- We trained a neural network for wildfire surveillance task via transfer learning.
- We pruned the network via Fourier Analysis.
- We use block-based image frame analysis to capture small smoke regions.
- We tested our system on HPWREN dataset and BoWFire dataset and obtained very good results.
- Thank your very much!
- Email: hpan21@uic.edu