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MobileNet-V2 for Wildfire Detection

MobileNet-V2: A mobile CNN model published in 2018.
We totally have about 10K training images:

3K wildfire images.

All images are resized into 224x224.

We will use NVIDIA Jetson Nano in our wildfire detection system.
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Training Dataset Samples




Fourier Transform Based Neural Network Prunin
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Goal: Make the network smaller and faster. z A |

We extract 3x3 convolution kernel weights and calculate
their Fourier Transforms (FT). "
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Fourier Transform Based Neural Network Prunin

We perform 64x64 FT and check their cosine similarity:
<X,Y>
[IXI[-{1¥1]
magnitudes of the two filters in vector form, respectively.

where X and Y are the Fourier transform

Filter similarity = cos(@) =

We treat the kernels with similarity larger than 0.99925 as a pair of similar kernels
and store only one of them. This value is chosen based on no-fire video test
experiment.

In this way, 22.91% kernels are removed.

(a) Kernel 613 (b) Kernel 626
Frequency Response of the Final Convolutional Layer



Fourier Transform Based Neural Network Prunin
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By running the inference 100 times and calculate the average -
I BatchNorm |

X112 X112 X 32
time consuming on the computer, we find that it takes 0.499921
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Block-Based Image Frame Analysis

= Problem: In real time application, input frames are in 1080P or higher
resolution, but the input of the network is 224x224. We may miss very small
smoke regions, if we just down-sample the frames.

= We divide a frame into many small tiles.

= We have overlapping tiles.




Neural Network Performance: HPWREN

= The High Performance Wireless Research and Education Network (HPWREN), a
University of California San Diego partnership project led by the San Diego
Supercomputer Center and the Scripps Institution of Oceanography's Institute
of Geophysics and Planetary Physics, supports Internet-data applications in the
research, education, and public safety realms.

TABLE III: False-Alarm Result on No-Fire Videos of HPWREN Database
= Dataset: https://hpwren.ucsd.edu/

Threshold None? 0.99925= 0.99900 0.99500
TABLE II: Daytime Fire Video Result of HPWREN Database Slimming Rate 0.00% 22.91% 24.90% 47.27%
Videos Name Frames | Num | Rate (%) | Num | Rate (%) | Num | Rate (%) | Num | Rate (%)
wilson-w-mobo-c? 10080 2 0.0198 2 0.0198 5 0.0496 63 0.6250
Videos Name Fire Starts First Detected wilson-s-mobo-c 10074 2 0.0199 2 0.0199 2 0.0199 69 0.6849
Fourier | Time No wilson-n-mobo-c® | 10024 3 0.0299 3 0.0299 4 0.0399 71 0.7083
Domain | Domain | Pruning wilson-e-mobo-c® | 10028 43 0.4288 43 0.4288 43 0.4288 104 1.0371
Pruning | Pruning vo-w-mobo-c 10009 5 0.0500 5 0.0500 5 0.0500 64 0.6394
Lyons Fire 156 led 168 164 69bravo-e-mobo-c 1432 1 0.0698 | 0.0698 1 0.0698 11 0.7682
Holy Fire East View 721 732 738 732 69bravo-e-mobo-c¢ 1432 0 0.0000 0 0.0000 0 0.0000 9 0.6285
Holy Fire South View 715 725 725 724 syp-e-mobo-c 1421 3 0.2111 3 0.2111 3 0.2111 13 0.9148
Skylinefire 684 690 690 690 sp-n-mobo-c¢ 1252 2 0.1597 2 0.1597 2 0.1597 12 0.9585
Palisades Fire 636 639 640 639 sp-w-mobo-cP 1282 1 0.0780 1 0.0780 2 0.1560 8 0.6240
Palomar Mountain Fire 262 277 279 275 sp-s-mobo-c 1272 2 0.1572 2 0.1572 2 0.1572 8 0.6289
Banner Fire 15 17 20 17 sp-e-mobo-c 1278 2 0.1565 2 0.1565 2 0.1565 10 0.7825
Highway Fire 4 6 6 6 AWe get same false-alarm result before and after pruning and slimming in threshold of 0.99925.
DeLuz Fire 37 48 51 48 PWith lower the slimming threshold (0.99900), the false-alarm rate increases on these videos.

“There is an unexpected long light shown in Fig.18b.



Neural Network Performance: HPWREN

Skylinefire north of Lyons Peak, 06/11/2020




Neural Network Performance: HPWREN
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Palisades fire, 10/21/2019




Neural Network Performance: HPWREN
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Neural Network Performance: BoWFire

Q001 1. 3% BB-3% 2. 957 5.00%[2. 23%
TABLE IV: Result of BoWFire Dataset R o BT g
Method Detection | False-Alarm Accuracy
Rate Rate 4.5%2.17

Muhammad et al. [30] 07.48% 18.69% 89.82%

Muhammad et al. [31] 03.28% 0.34% 92.04% e :

Chaﬂxia et El. [32] 92-44% 5.61% 93.36% (a) Fire immage No.34 (b) No-fire mage No.98
Our Method 91.60% 4.67%* 93.36% Fig. 19: Test result on the BoWFire dataset.

* There are two smoke images labeled as no-fire as shown in Figure
20. Our method managed to detect them, but we still count them as

false-alarm cases here for comparison because they are not discussed
in [30]- [32]. If we count them as true-detected cases, then our three
rates are 91.74%, 2.80% and 94.25%, respectively. Besides, as it is

stated at the beginning of SectionIV-A, we sacrificed detection rate to
gain false-alarm rate. Therefore, although our detection rate is lower - ‘
than [30]- [32], our accuracy reaches the highest. T —— :

(a) No-Fire Image No.63 (b) No-Fire Image No.64

Fig. 20: Two smoke images in the BoWFire no-fire test dataset.

Dataset: https://bitbucket.org/gbdi/bowfire-dataset/downloads/



Conclusion

= We trained a neural network for wildfire surveillance task via transfer
learning.

= We pruned the network via Fourier Analysis.

= We use block-based image frame analysis to capture small smoke regions.

= We tested our system on HPWREN dataset and BoWFire dataset and obtained
very good results.

= Thank your very much!

= Email: hpan21®@uic.edu




