

Initialization Using Perlin Noise for Training Networks with a Limited Amount of Data

Tokyo Tech

AIST

Nakamasa Inoue^{1*}, Eisuke Yamagata^{1*}, Hirokatsu Kataoka² ¹Tokyo Institute of Technology, ²AIST ¹CPR 2020 * equal contribution

We propose a network initialization method using Perlin noise.

Gaussian Initialization

Proposed Initialization

Key Idea

Initialize network parameters by solving an artificial Perlin noise classification problem

Gradient noise proposed by Ken Perlin in 1983

Fine-to-cause categories on Perlin noise

4

Intra-category variation of noise samples

Comparison with other methods on four datasets.

TABLE I

PERFORMANCE COMPARISON ON FOUR DATASETS. CLASSIFICATION ACCURACIES (%) FOR EACH DATASET WITH TWO TYPES OF NETWORK ARE SHOWN.

Method	Cifar-10		Cifar-100		Omniglot		DTD	
	ResNet50	ResNet152	ResNet50	ResNet152	ResNet50	ResNet152	ResNet50	ResNet152
Normal initialization	92.62	93.47	75.16	75.59	2.66	2.37	13.68	5.24
Xavier initialization [15]	92.30	93.58	73.85	75.14	5.88	5.57	27.51	24.75
He initialization [3]	93.50	93.43	74.17	75.73	4.61	3.06	24.31	20.14
Proposed method	93.76	94.27	77.42	78.21	17.54	18.71	55.03	54.18

Fig. 5. Visualization of filters of the first convolutional (conv1) layer. Filters before and after training on Cifar-10 are shown. (a) He initialization and (b) proposed method.