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Introduction

• A fundamental limitation of deep convolutional neural network (DCNN)
✓Due to the strong dependency on training data, DCNN is fragile to domain shifts.
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Introduction

• Definitions
✓ Image domain indicates the contextual characteristic of an image set, which is 

affected by the process of image production.

✓Domain shift is statistical difference of data distributions between two domains.

• It degrades the performance of DCNN.

• Naïve Solution to Overcome Domain Shifts
✓Preparing a large number of images & labels in the domain of interest.

• Very costly and sometimes impossible.

• Alternative: Algorithmic Approach
✓To overcome domain shifts via domain adaptive learning schemes.

• Called “Domain Adaptation” (DA).
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Related Work

• Unsupervised Domain Adaptation (UDA) ← Majority of previous methods
✓Feature-level adaptation approach [5, 8, 9, 10, 12, 13].

✓Pixel-level adaptation approach [6, 7, 11].

• Limitations of UDA approaches
✓Discriminative power in target domain is not guaranteed.

✓Not robust to large domain shifts (e.g., shape variations).

Computational Intelligence Lab.



Related Work

• Semi-Supervised Domain Adaptation (SSDA)
✓ In comparison with UDA, a few labeled images are additionally given for training

• SSDA via Minimax Entropy (MME) [14]
✓Update to increase entropy w.r.t. Classifier

✓Update to decrease entropy w.r.t. Feature extractor
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Proposed Method

• Motivation of the proposed SSDA method
✓Exploit the labeled target images to assign pseudo labels to unlabeled target images
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Proposed Method

• Step #1: Training a Baseline Network for Generating Pseudo Labels
✓MME [14] for baseline SSDA

✓Pseudo label is assigned to every unlabeled target image

• Step #2: Selective Pseudo Labeling
✓Selecting restricted amount of pseudo labels for high reliability

• Step #3: Label-Noise Robust Training via Progressive Self-Training
✓Pseudo labels are inevitably noisy

✓Apply a learning scheme that is robust to noisy labels
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Proposed Method

• Overview of the proposed method
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Proposed Method

• Step #1: Training a Baseline Network for Generating Pseudo Labels
✓ Image sets

• Labeled source images:  𝒟𝑠 = (𝐱𝑖
𝑠, 𝑦𝑖

𝑠) 𝑖=1
𝑛𝑠

• Labeled target images:  𝒟𝑡 = (𝐱𝑖
𝑡, 𝑦𝑖

𝑡)
𝑖=1

𝑛𝑡

• Unlabeled target images:  𝒟𝑢 = 𝐱𝑖
𝑢

𝑖=1
𝑛𝑢

✓Generate two kinds of pseudo label for 𝐱𝑖
𝑢

• Hard label:  ො𝑦i
𝑢= argmin

𝑘∈{1,...,𝐾}
𝑝(𝑦 = 𝑘|𝐱𝑖

𝑢)

• Soft label:  𝐲i
𝑢 = [𝑝(𝑦 = 1|𝐱𝑖

𝑢), …, 𝑝(𝑦 = 𝐾|𝐱𝑖
𝑢)]

• Pseudo labeled target images: 𝒟𝑢 = (𝐱𝑖
𝑢, 𝐲i

𝑢, ො𝑦i
𝑢) 𝑖=1

𝑛𝑢
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Proposed Method

• Step #2: Selective Pseudo Labeling
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Proposed Method

• Step #2: Selective Pseudo Labeling
✓Applied independently for each image category

✓For the 𝑗-th unlabeled image, a pairwise distance 𝑑𝑗 is calculated

✓Sort the unlabeled images based on the magnitude of 𝑑𝑗, and determine 𝑛𝑢
’ samples 

as pseudo labels

✓ru = 0.2 as default

✓Pseudo labeled target images:  𝒟𝑢
∗ = (𝐱𝑖

𝑢, 𝐲𝑖
𝑢, ො𝑦𝑖

𝑢) 𝑖=1
𝑛𝑢
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Proposed Method

• Step #2: Selective Pseudo Labeling
✓Reliability of pseudo labels is enhanced after the selective pseudo labeling stage
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Proposed Method

• Step #3: Label-Noise Robust Training via Progressive Self-Training
✓The selected pseudo labels are still not completely reliable (Noisy)

✓Apply a label noise-robust learning scheme

• Joint Optimization Framework for Learning with Noisy Labels [17]
✓Alternately updating 1) the network and 2) the noisy label set

✓Utilize the output prediction (soft labels) for training the network

✓Comparison of [17] and this work

• [17]: Noisy labels are manually generated via simulation

• This work: Directly employ noisy pseudo labels
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Proposed Method

• Final Objective Function

ℒ𝐹 = ℒ𝑙 + 𝜆𝐻 +ℒ𝑝𝑙

ℒC = ℒ𝑙 − 𝜆𝐻 +ℒ𝑝𝑙

ℒ𝑙 = 𝔼(𝐱,𝑦)∈𝒟𝑠,𝒟𝑡
ℒ𝑐𝑒 𝐩 𝐱 , 𝑦

𝐻 = 𝔼𝐱∈𝒟u


𝑖=1

𝐾

𝑝 𝑦 = 𝑖 𝐱 log(𝑝(𝑦 = 𝑖|𝐱))

ℒ𝑝𝑙 = 𝔼(𝐱, 𝐲)∈𝒟𝑢
∗ ℒ𝑐𝑒(𝐩(𝐱), 𝐲)
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Experiments

• Datasets
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Experiments

• Image samples in the LSDAC dataset [3]
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Experiments

• Experimental Setups
✓Trained on 𝒟𝑠, 𝒟𝑡 (1-shot or 3-shot), and 𝒟𝑢

✓Tested on: 𝒟𝑢

• Baseline Networks
✓AlexNet [27], VGG-16 [28], and ResNet-34 [29]

✓To demonstrate the robustness across various network architectures

• Implementation
✓Framework: PyTorch [32]

✓GPU: A single NVIDIA Titan-X (Pascal Archit.)
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Experiments

• DA Methods in Comparison
✓S+T

• Trained on 𝒟𝑠 and 𝒟𝑡

✓DANN [4], ADR [20], CDAN [5], ENT [21]

• UDA methods that are trained with the SSDA setup (+ 𝒟𝑡)

✓MME [14]

• The baseline SSDA method
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Experiments
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Experiments

• Ablation studies
✓Ratio of selecting pseudo labels (𝑟𝑢)

• Selecting moderate amounts of pseudo labels is encouraged

✓ ‘With’ vs. ‘Without’ applying label noise-robust learning scheme

• ‘Without’ indicates: Training with fixed hard pseudo labels
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Conclusion

• In this paper, we have introduced a novel SSDA method for image classification.

• The key idea is to exploit labeled target images to find out reliable pseudo labels for the 
unlabeled target images.

• The proposed SSDA method outperforms previous state-of-the-art method by 2.7%, 0.9%, 
and 2.2% for LSDAC, Office-Home, and Office datasets, respectively.
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