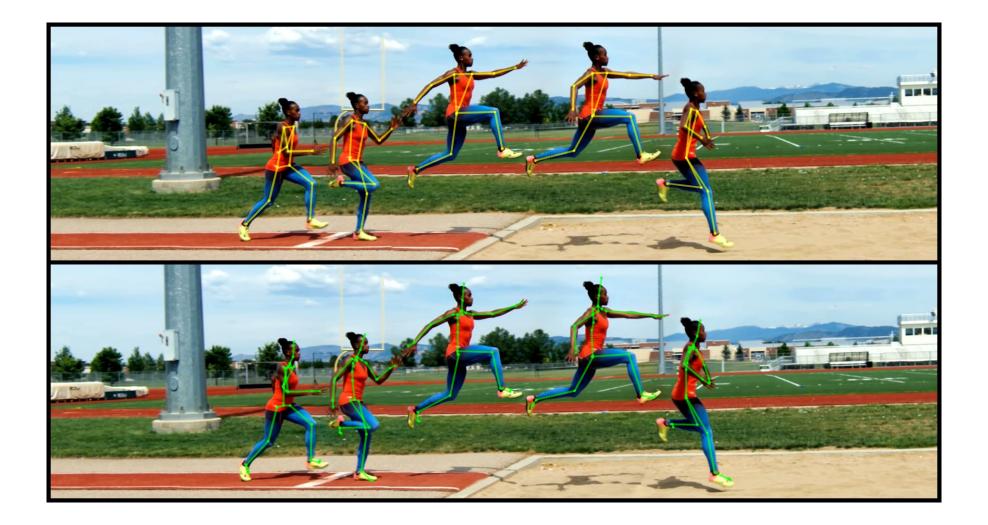
JUMPS: Joints Upsampling Method for Pose Sequences

Lucas Mourot, François Le Clerc, Cédric Thébault and Pierre Hellier



Human Pose Estimation

• Important in many applications s.t.

- Markerless motion capture
- Advanced sports analysis
- Autonomous driving

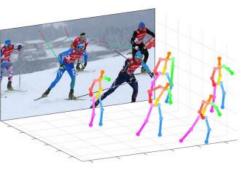
• Frequent issues in 2D HPE

- Frame by frame \rightarrow temporal inconsistencies
- Limited number of joints s.t. 12 or 16
- (Self-)Occlusions leading to missing keypoints

• 3D HPE

• Generally rely on 2D HPE in a way or another

[1]



Improving 2D Pose Sequences

Goals:

- Increase spatial resolution, i.e. upsample joints
- Recover occluded joints
- Increase spatio-temporal consistency

Approach

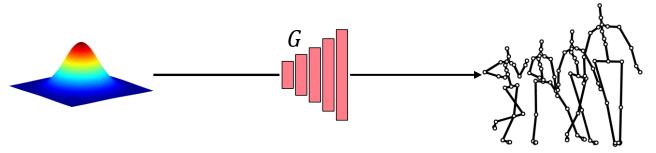
- Learn the distribution of human motion at high spatial resolution with a deep generative model
- Produce a complete high-res. motion with the model learnt through an optimization with the incomplete low-res. input motion as a constraint

Benefits

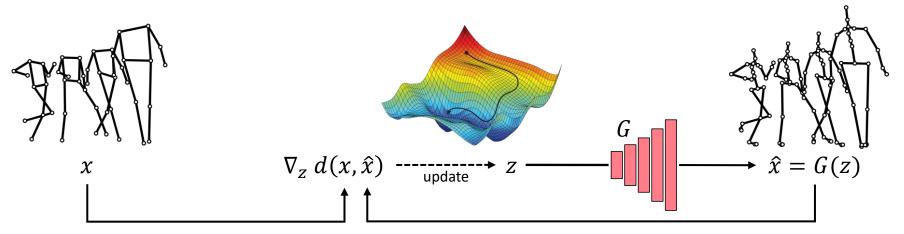
- Enrich motions: details, completeness, consistency
- Should help to disentangle 3D poses from 2D keypoints in 3D HPE

Method Overview

- 1. Learn the distribution of human motions as a mapping from latent variables to pose sequences
 - The mapping is parametrized by the weights of the generator G.

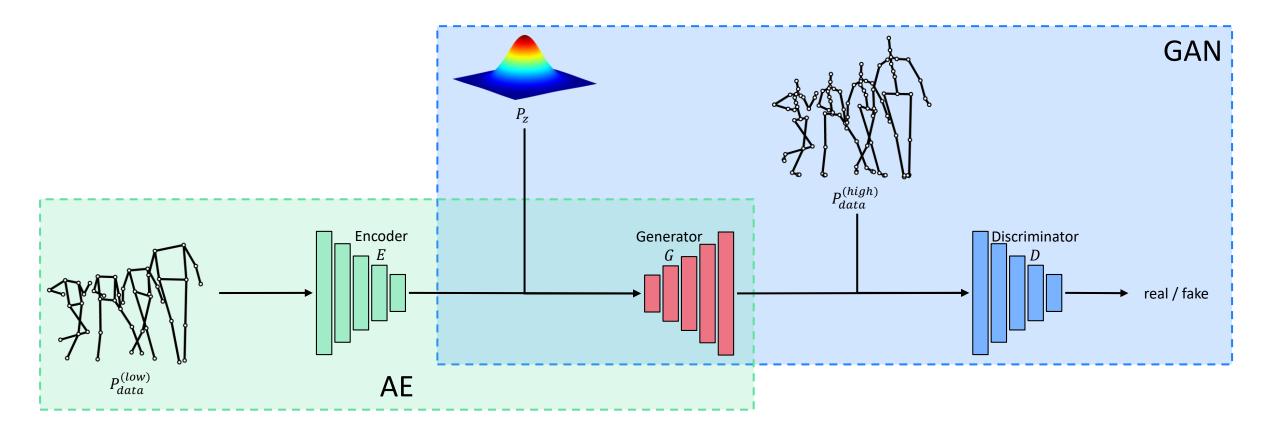


- 2. Upsample and complete motions by optimizing latent variables s.t. generated motion matches input
 - Distance computed over nonmissing joints.



Deep Generative Model

- Autoencoder (AE) + Generative Adversarial Network (GAN)
- Decoder
 Generator



Losses & Training

• Alternating iterations between discriminator and generator / encoder.

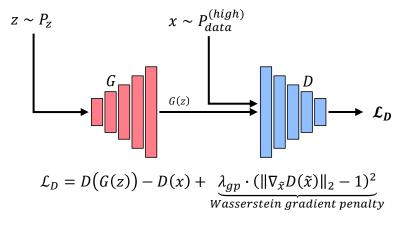
GAN framework:

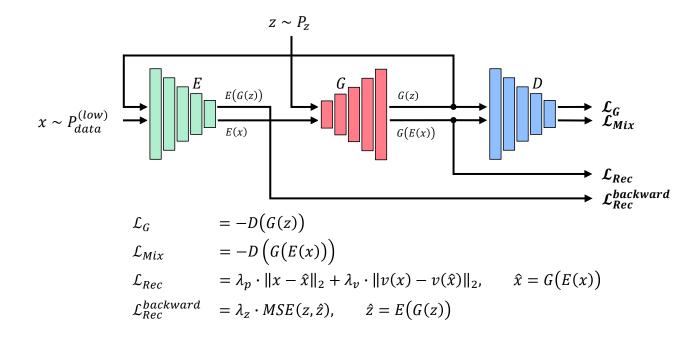
• Wassertstein loss used (see \mathcal{L}_D and \mathcal{L}_G)

• AE framework:

- both positions and velocities are optimized (see \mathcal{L}_{Rec})
- Cyclic loss $\mathcal{L}_{Rec}^{backward}$ encourage the latent space learned to match P_z

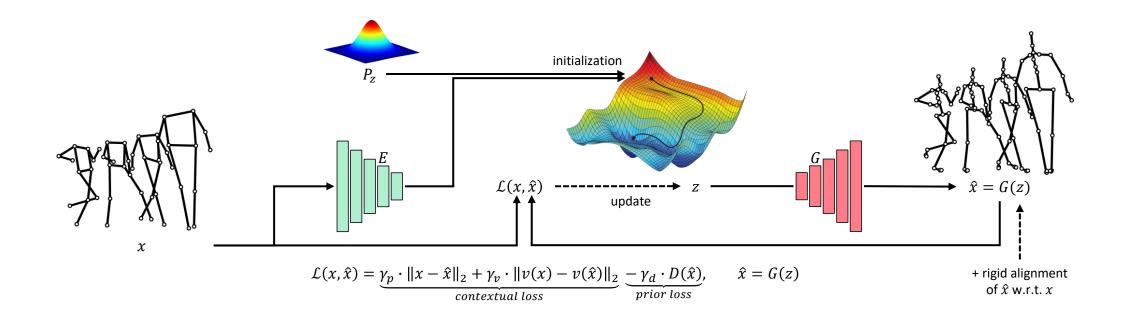
Discriminator's training iteration





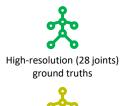
Latent Optimization

- Goal $x^* = G(z^*)$, with $z^* = \arg \min_{z \in P_z} \mathcal{L}(x, G(z))$
- $\mathcal{L} = contextual loss + prior loss$
- Several optimization in parallel starting from different z_0 , including E(x)
- Rigid alignment of G(z) w.r.t. input motion x

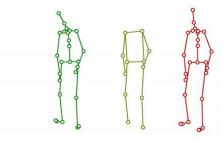


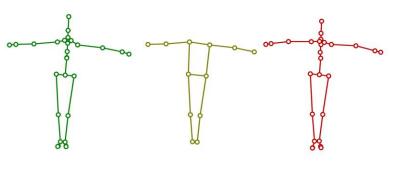
Results: Upsampling

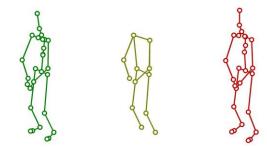
Method	PCKh@0.1	PCKh@0.5	PCKh@1.0	AUC over [0, 1]
JUMPS w/o alignment	0.0368	0.4384	0.6814	0.3912
JUMPS w/o encoder	0.1701	0.8259	0.9678	0.7005
JUMPS (ours)	0.6096	0.9674	0.9965	0.8803

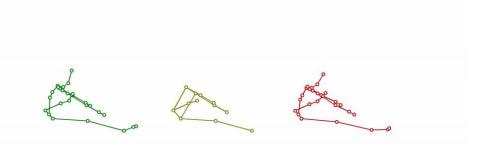


Low-resolution (12 joints) ground truths



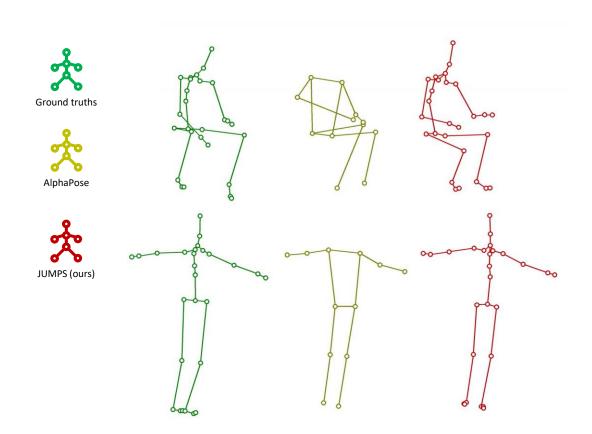


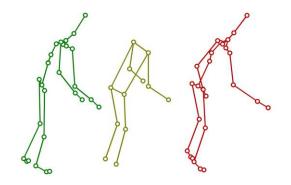


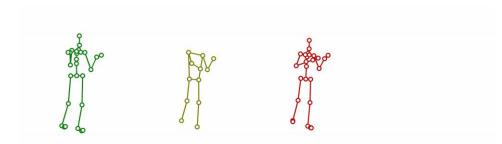


Results: Human Pose Estimation Post-Processing

Method	PCKh@0.1	PCKh@0.5	PCKh@1.0	AUC over [0, 1]
JUMPS w/o alignment	0.0207	0.3423	0.6304	0.3249
JUMPS w/o encoder	0.0537	0.6801	0.9059	0.5692
AlphaPose	0.0941	0.7659	0.9157	0.6310
JUMPS (ours)	0.0842	0.7723	0.9276	0.6341







animated results