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Image Composition

= I; € R3: Image color (at pixel position i)

a; € R : Alpha value (translucency)

F; € R3: Foreground color
B; € R3: Background color



Foreground Estimation

and

= Goal: Obtain foreground F from image / and alpha matte «
= Problem: Underconstrained

= 6 unknowns in F; and B;

= 3 equations (one for each color channel)



= Naively composing image / onto background leads to color
bleeding
» al=a(aF+(1—-a)B)= a® F+ a(l —a)B #aF

= Foreground F required to achieve pleasant results



Closed Form Foreground Estimation [LLW07]
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= Minimize cost function over pixels i and color channels ¢

= Constrain composite color

= Penalize horizontal color gradients F; , B;, in regions of large
alpha gradients |« |

= Same for vertical color gradients F; , Bj,

= Requires 3 solves (one per color channel) of a 2N x 2N sparse

linear system where N is number of pixels 5



Solution? - Local Formulation of Method by [LLWO07]

cost(Ff, Bf) = (aiFf + (1 — a;)Bf — If)?

local

3 Cer + wlo — agl) [(FF — ) + (BF = B)?]
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= Local cost function over neighbors j € N; of pixel i

Control regularization with parameter ¢,

Weight gradient term with parameter w

Problem: How to solve this cost function?

= |terative approach infeasible
= Solution only propagates slowly across image



Solution - Multi-Level Approach

1. Downsample input image and « until small
2. Solve at lowest resolution, use as initialization for larger size

4x6 8x12  16x25 32x561 64x102 128x204




Quality of Estimated Foreground

12 [ Multi-Level (Ours)
10 [ Closed-Form (Levin)
I IndexNet (Lu)

[0 KNN (Chen)

MTTm;Tﬁiam@@wm@@mmTT@mmmﬁm'ﬂ

12 23 . B 2% 27

= Computed sum of absolute differences (SAD) for 27 images in
dataset by [RRWT09]

= Adapted IndexNet by [LDSX19] to perform foreground
estimation instead of alpha matting



Quality of Estimated Foreground for Various Alpha Mattes

Alpha  Foreground SAD MSE GRAD
103 10° 1073

Multi-Level (Ours)  20.9 1.44 8.89
Closed-Form (Levin) 21.1 1.34  8.13

Qgt

IndexNet (Lu) 28.8 233 111
KNN (Chen) 320 325 161
Multi-Level (Ours)  31.8 2.5 11.5
Closed-Form (Levin) 36.6 3.51 14.2
CRNN | dexNet (Lu) 383 39 145
KNN (Chen) 346 322 130
Multi-Level (Ours) 479 566 15.8
Closed-Form (Levin) 59.0 8.03 215
DX |ndexNet (Lu) 62.6 865 214
KNN (Chen) 37.1 3.81 16.9
Multi-Level (Ours) 31.6 2.44 11.4
Closed-Form (Levin) 37.7 3.98 15.3
M IndexNet (Lu) 364 393 157
KNN (Chen) 337 297 136




Average Runtime per Image

Setup  Method Time [s] Std. dev. [s]
Multi-Level (Ours) 2.04 0.296
HPC Closed-Form [LLW07] 26.3 5.48
IndexNet [LDSX19] 74.5 10.1
KNN [CLT13] 38.2 6.47
Multi-Level (Ours) 1.48 0.251
Closed-form [LLWO07] 27.9 7.93
MacBook

IndexNet [LDSX19] - _
KNN [CLT13] 148.0 56.2

10



Runtime for Varying Image Sizes

—— IndexNet (Lu)
KNN (Chen)
81 Closed-Form (Levin)
——— Multi-Level (Ours)
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Maximum Memory Usage

Method Memory [MB]  Data Type
Multi-Level (Ours) 1182 64-bit float
Closed-Form [LLWOQ7] 7781 64-bit float
IndexNet [LDSX19] 91648 32-bit float
KNN [CLT13] 7850  64-bit float

= IndexNet evaluated with 32-bit float precision due to high
memory usage
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Summary & Conclusion

= Multi-level approach effective to solve local cost function for
foreground estimation

= Comparable quality to existing methods
= Order of magnitude faster
= Low memory usage

= Robust with respect to different alpha estimates
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Implementation

= Part of open-source PyMatting library [GUCH20]
https://github.com/pymatting/pymatting

= Also available with OpenCL or CUDA acceleration

= Easy installation via pip install PyMatting

from pymatting import

image load_image("image.png", "RGB"
alpha = load_image("alpha.png", "GRAY"

foreground = estimate_foreground ml(image, alpha
foreground with_alpha = stack_images(foreground, alpha

save_image("result.png", foreground with_alpha
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https://github.com/pymatting/pymatting
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