
Fast Multi-Level Foreground Estimation

Thomas Germer, Tobias Uelwer, Stefan Conrad, Stefan Harmeling

1



Image Composition

Ii = αi · Fi + (1− αi ) · Bi

= · + ·

• Ii ∈ R3: Image color (at pixel position i)
• αi ∈ R : Alpha value (translucency)
• Fi ∈ R3: Foreground color
• Bi ∈ R3: Background color
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Foreground Estimation

I α F

and →

• Goal: Obtain foreground F from image I and alpha matte α
• Problem: Underconstrained

• 6 unknowns in Fi and Bi

• 3 equations (one for each color channel)
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Motivation

αI αF

vs

• Naively composing image I onto background leads to color
bleeding

• αI = α(αF + (1− α)B) = α2 F + α(1− α)B 6= αF
• Foreground F required to achieve pleasant results
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Closed Form Foreground Estimation [LLW07]
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• Minimize cost function over pixels i and color channels c
• Constrain composite color
• Penalize horizontal color gradients Fix , Bix in regions of large

alpha gradients |αix |
• Same for vertical color gradients Fiy , Biy
• Requires 3 solves (one per color channel) of a 2N × 2N sparse

linear system where N is number of pixels 5



Solution? - Local Formulation of Method by [LLW07]
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• Local cost function over neighbors j ∈ Ni of pixel i
• Control regularization with parameter εr
• Weight gradient term with parameter ω
• Problem: How to solve this cost function?

• Iterative approach infeasible
• Solution only propagates slowly across image
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Solution - Multi-Level Approach

1. Downsample input image and α until small
2. Solve at lowest resolution, use as initialization for larger size

2x3 4x6 8x12 16x25 32x51 64x102 128x204
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Quality of Estimated Foreground

• Computed sum of absolute differences (SAD) for 27 images in
dataset by [RRW+09]

• Adapted IndexNet by [LDSX19] to perform foreground
estimation instead of alpha matting
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Quality of Estimated Foreground for Various Alpha Mattes

Alpha Foreground SAD MSE GRAD
10−3 103 10−3

αgt

Multi-Level (Ours) 20.9 1.44 8.89
Closed-Form (Levin) 21.1 1.34 8.13
IndexNet (Lu) 28.8 2.33 11.1
KNN (Chen) 32.0 3.25 16.1

αKNN

Multi-Level (Ours) 31.8 2.5 11.5
Closed-Form (Levin) 36.6 3.51 14.2
IndexNet (Lu) 38.3 3.9 14.5
KNN (Chen) 34.6 3.22 13.0

αIDX

Multi-Level (Ours) 47.9 5.66 15.8
Closed-Form (Levin) 59.0 8.03 21.5
IndexNet (Lu) 62.6 8.65 21.4
KNN (Chen) 37.1 3.81 16.9

αIFM

Multi-Level (Ours) 31.6 2.44 11.4
Closed-Form (Levin) 37.7 3.98 15.3
IndexNet (Lu) 36.4 3.93 15.7
KNN (Chen) 33.7 2.97 13.6
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Average Runtime per Image

Setup Method Time [s] Std. dev. [s]

HPC

Multi-Level (Ours) 2.04 0.296
Closed-Form [LLW07] 26.3 5.48
IndexNet [LDSX19] 74.5 10.1
KNN [CLT13] 38.2 6.47

MacBook

Multi-Level (Ours) 1.48 0.251
Closed-form [LLW07] 27.9 7.93
IndexNet [LDSX19] – –
KNN [CLT13] 148.0 56.2
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Runtime for Varying Image Sizes
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Maximum Memory Usage

Method Memory [MB] Data Type

Multi-Level (Ours) 1 182 64-bit float
Closed-Form [LLW07] 7 781 64-bit float
IndexNet [LDSX19] 91 648 32-bit float
KNN [CLT13] 7 850 64-bit float

• IndexNet evaluated with 32-bit float precision due to high
memory usage
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Summary & Conclusion

• Multi-level approach effective to solve local cost function for
foreground estimation

• Comparable quality to existing methods
• Order of magnitude faster
• Low memory usage
• Robust with respect to different alpha estimates
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Implementation

• Part of open-source PyMatting library [GUCH20]
https://github.com/pymatting/pymatting

• Also available with OpenCL or CUDA acceleration
• Easy installation via pip install PyMatting

from pymatting import *
# Load images
image = load image("image.png", "RGB")
alpha = load image("alpha.png", "GRAY")
# Estimate foreground
foreground = estimate foreground ml(image, alpha)
# Concatenate RGB and alpha channels
foreground with alpha = stack images(foreground, alpha)
# Save resulting image
save image("result.png", foreground with alpha)
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