FOANet: A Focus of Attention Network with Application to Myocardium Segmentation

Zhou ZHAO, Elodie Puybareau, Nicolas Boutry, Thierry Géraud
EPITA Research and Development Laboratory (LRDE), Le Kremlin-Bicêtre, France
Email: zhou.zhao@lrde.epita.fr
Cardiovascular diseases (CVDs) are the leading cause of death globally. According to the World Health Organization (WHO).

Medical imaging:
- Computed tomography (CT)
- Magnetic resonance imaging (MRI)
- Positron emission tomography (PET)
- Single photon emission computed tomography (SPECT)
- Ultrasound (US)

Diagnosis and Treatments for CVDs.
The difficulties of cardiac segmentation on the MR Images are shown as follow:

- **Poor contrast**
 - between myocardium and surrounding structures

- **Brightness**
 - in left ventricular/right ventricular cavities due to blood flow

- **Non-homogeneous partial volume**
 - limited CMR resolution (1.5T, 3.0T...) along the long-axis

- **Noise**
 - motion artifacts and heart dynamics

- **Shape and intensity variability**
 - different patients and pathologies
Methodology

Global overview of the proposed method

The network framework consists of two different fully convolutional networks (FCN), one for positioning and the other for segmentation.

Localization

Segmentation
Architecture of our networks

1) Part 1 belongs to Network1;
2) Part 2 belongs to Network2.
Hybrid Loss

To increase the boundary quality, the hybrid loss (only used in segmentation network) is defined:

\[l = l_{cce} + l_{ssim} + l_{dc} \]

*\(cce \): Categorical Cross Entropy;
*\(ssim \): Structural Similarity;
*\(dc \): Dice Coefficient.

\[l_{cce} \text{ is defined:} \]

\[l_{cce} = - \sum_{i}^{C} \sum_{a}^{H} \sum_{b}^{M} y^i_{(a,b)} \ln y^i_{*(a,b)} \]

C: the numbers of class for each image;
*\(H, M \): the height and width of image;
*\(y^i_{(a,b)} \in \{0,1\} \): the ground truth one-hot label of class \(i \) in the position (a, b);
\(y^i_{(a,b)} \): the predicted probability of class \(i \).
SSIM loss can assess image quality, and it can be used to capture the structural information. l_{ssim} is defined:

$$
\begin{align*}
 l_{ssim} &= 1 - \frac{(2\mu_S \mu_G + C_1)(2\sigma_{SG} + C_2)}{(\mu_S^2 + \mu_G^2 + C_1)(\sigma_S^2 + \sigma_G^2 + C_2)} \\
S: \text{predicted probability map;} \\
G: \text{ground truth mask;} \\
\mu, \sigma: \text{the mean and standard deviations of } S \text{ and } G \text{ respectively;} \\
\sigma_{SG}: \text{the covariance of } S \text{ and } G; \\
C_1 = 0.01^2 \text{ and } C_2 = 0.03^2 \text{ are used to avoid dividing by zero.}
\end{align*}
$$

DC loss is used to measure the similarity of two sets. l_{dc} is defined:

$$
\text{dice}_i = \frac{2 \sum_{n}^{N_i} y_n^i y_{*n}^i + \epsilon}{\sum_{n}^{N_i} (y_n^i + y_{*n}^i) + \epsilon}
$$

$$
l_{dc} = 1 - \sum_{i}^{c} \frac{\text{dice}_i}{N_i + \epsilon}
$$

N_i: the numbers of class i;
ϵ: smooth factor.
To decrease the effects of similar tissues, Focus of Attention (FOA) is defined:

$$I_{FOA} = \sum_a^{H} \sum_b^{M} I_{(a,b)} \omega_{FOA}$$

$I_{(a,b)}$ denotes image intensity at location (a,b). ω_{FOA} is a Gaussian weighted function defined by:

$$\omega_{FOA} = \alpha \exp\left(\frac{-(a^* - a)^2 - (b^* - b)^2}{\delta^2}\right)$$

(a^*, b^*): the object center;
α: normalization constant;
δ: scale parameter.

Cropping after locating original image

FOA

ω_{FOA}
Experiments and Results

Dataset description

1) LVQuan19
- 56 patients processed SAX MR sequences
- 20 temporal frames correspond to a whole cardiac cycle
- In-plane resolution: 0.6836 ~1.5625 mm/pixel
- Image sizes: 256 × 256 or 512 × 512 pixels

2) MM-WHS2017
- 20 MRI and 20 CT image
- In-plane resolution: 0.78 ~1.2 mm/pixel
- Slice spacings: 0.899 ~1.60 mm/pixel
- Average image sizes: 324 × 325 × 171 pixels
Pre-processing in the localization network

1) Gauss normalization

For the (2D+ t) image I corresponding to a given patient, we compute I:

$$I = \frac{I - \mu}{\sigma}$$

μ, σ: is the mean and standard deviation of I (σ is assumed not to be equal to zero).

2) Temporal-like image

Note: For 2D model, although it can have a much larger field of view, is not able to fully explore inter-slice information.
Pre-processing in the segmentation network

1) Data augmentation;
 ---using rotations and flips or not
2) Resizing;
 ---with a fixed inter-pixel spacing
3) Focus of Attention (FOA);
4) Gauss normalization;
5) Temporal-like image.

Post-processing in the segmentation network

1) **Keeping** the greatest connected component;
 ---for the segmented (2D+t) image
2) **Get back** the initial inter-pixel spacing;
 ---computing the inverse interpolation on the x and y axes

Post-processing

Adding a zero-valued border to get back initial image shape
Implementation and Experimental Setup

(1) Keras/TensorFlow using a NVidia Quadro P6000 GPU;

(2) $l_{cce} \rightarrow$ localization network, hybrid loss $l \rightarrow$ segmentation network;

(3) Adam optimizer;
 ---batchsize=1, $\beta_1=0.9$, $\beta_2=0.999$, epsilon=0.001, lr = 0.002

(4) Epoch=10;

(5) Dividing all classes into the same class given in the ground truth(GT) \rightarrow localization network.
Evaluation Methods

(1) Dice Coefficient

(2) Boundary of Dice Coefficient (BDC)
Ablation study includes three parts (architecture, loss and FOA).

<table>
<thead>
<tr>
<th>Ablation</th>
<th>Configurations</th>
<th>DC</th>
<th>95HD</th>
<th>BDC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Architecture</td>
<td>a: B. + ℓ_{CCE}</td>
<td>0.842</td>
<td>3.186</td>
<td>0.269</td>
</tr>
<tr>
<td></td>
<td>b: B. + L. + ℓ_{CCE}</td>
<td>0.867</td>
<td>2.209</td>
<td>0.281</td>
</tr>
<tr>
<td></td>
<td>c: BLP + ℓ_{CCE}</td>
<td>0.877</td>
<td>2.019</td>
<td>0.303</td>
</tr>
<tr>
<td>Loss</td>
<td>d: BLP + ℓ_{SSIM}</td>
<td>0.873</td>
<td>2.094</td>
<td>0.297</td>
</tr>
<tr>
<td></td>
<td>e: BLP + ℓ_{DC}</td>
<td>0.871</td>
<td>2.193</td>
<td>0.295</td>
</tr>
<tr>
<td>FOA (our)</td>
<td>i: BLP + FOA + ℓ_{CSD}</td>
<td>0.879</td>
<td>1.826</td>
<td>0.306</td>
</tr>
<tr>
<td>UNet</td>
<td>-</td>
<td>0.862</td>
<td>3.976</td>
<td>0.291</td>
</tr>
</tbody>
</table>

“B.” means “baseline” (Net.1); “L.” means “localization”; “P2.” means “Part 2” (Net.2); “BLP” means “baseline + localization + Part2”.

Note: $\ell_{CSD} = \ell_{CCE} + \ell_{SSIM} + \ell_{DC}$

![Image of ablation study results](image)
One patient
Red: Ground truth
Green: Prediction
Yellow: Interaction
Testing our method on **MM-WHS2017** for segmenting the myocardium.

<table>
<thead>
<tr>
<th>Method</th>
<th>DC(train)</th>
<th>DC(test)</th>
<th>Computation time</th>
<th>Data augmentation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Our Method</td>
<td>0.851</td>
<td>?</td>
<td><2s</td>
<td>No</td>
</tr>
<tr>
<td>Champion</td>
<td>0.796</td>
<td>0.781</td>
<td><2min</td>
<td>No</td>
</tr>
<tr>
<td>The second place</td>
<td>0.752</td>
<td>0.778</td>
<td>-</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Note: **Red**: best; Champion : the first place in MM-WHS2017 Challenge
(1) **Boundary-aware network**.
---FOANet consists of one localization network and one segmentation network.

(2) **Hybrid loss**.
---combines CCE, SSIM and DC to guide the training process on three levels: pixel level, patch-level and map-level.

(3) **Focus of Attention (FOA)**.
---decreases the effect of surrounding similar tissues.

(4) **Temporal-like method**.
---let the FOANet take advantage of the temporal information by stacking 3 successive 2D frames.

In the future work

(1) **Studying the impact of the hybrid loss**
---by weighting differently the segmentation loss.
(2) **Adding constraints on shapes in the network**.
Thank You!