

Polynomial Universal Adversarial Perturbations for Person Re-Identification

Presenter: Wenjie Ding

Wenjie Ding¹, Xing Wei¹, Rongrong Ji², Xiaopeng Hong¹, Yihong Gong¹

¹Faculty of Electronic and Information Engineering, Xi'an Jiaotong University

²Department of Artificial Intelligence, School of Information, Xia'men University

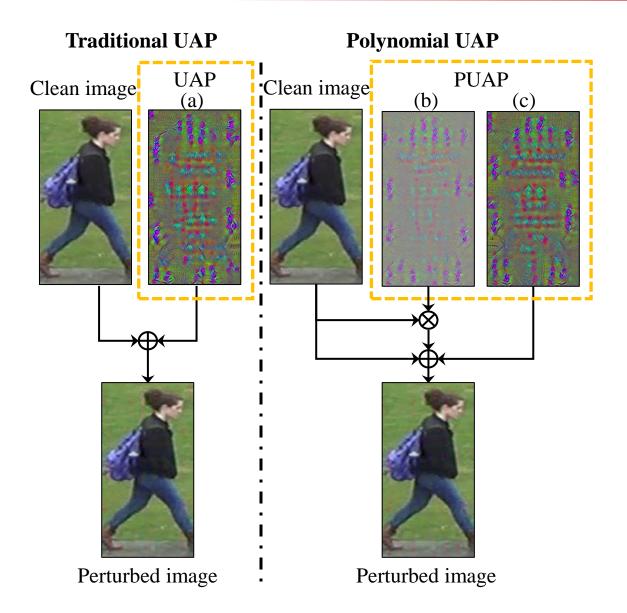
Poster

- Universal Adversarial Perturbation (UAP)
 - ☐ Single fixed perturbation map that perturbs the images of interest.
 - ☐ No online optimization, implementation convenient
- **♦** Problems:
 - ☐ Simple constant form limits the attack power.
 - □ UAP attack on open-set tasks is challenging.

Main Contributions

a. Formulating the perturbation signal as a polynomial form for the first time

b. Provide a mechanism to control the energy of perturbation signal


c. Introduce a Pearson correlation coefficient (PCC) loss

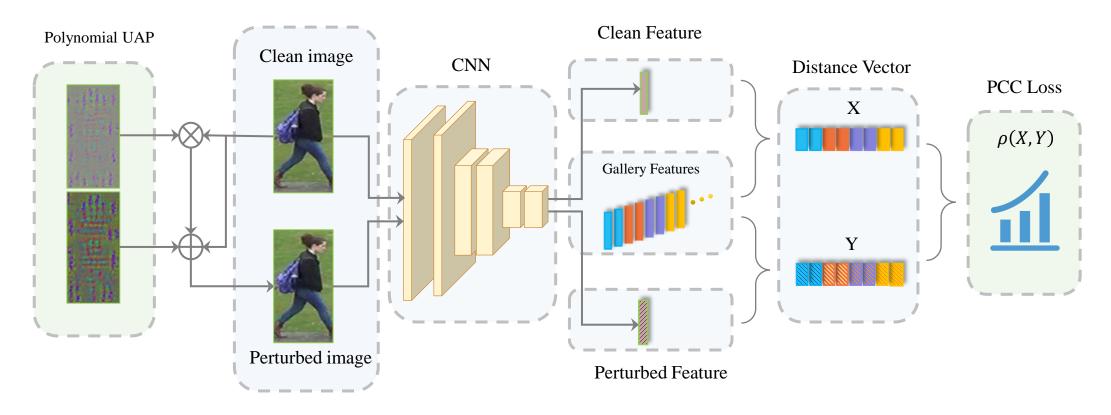
Comparisons of traditional additive UAPs and the proposed polynomial UAPs.

- Element-wise addition
- Hadamard product

Traditional additive UAPs Vs. Polynomial UAPs:

$$\phi(x) \neq \phi(x+\sigma)$$
 Vs. $\phi(x) \neq \phi(\alpha x + \sigma)$

 ϕ represents the whole Re-ID system including the feature extraction and the sorting operation. σ represents the (traditional) additive perturbation and α represents the multiplicative factor.



Framework of the proposed method

- 1. Different colors in the features stand for different IDs.
- 2. Texture-rendered feature vector indicate the attack.
- 3. The model weights are fixed and only the perturbation signals are updated during training.

Mathematical form of the framework

Polynomial UAPs:

$$\phi(x) \neq \phi(\alpha x + \sigma)$$

 ϕ represents the whole Re-ID system including the feature extraction and the sorting operation. σ represents the (traditional) additive perturbation and α represents the multiplicative factor.

Pearson Correlation Coefficient Loss:

$$\mathcal{L}_{PCC} = \frac{\sum_{i=1}^{N} (a_i - \bar{a})(b_i - \bar{b})}{\sqrt{\sum_{i=1}^{N} (a_i - \bar{a})^2} \sqrt{\sum_{i=1}^{N} (b_i - \bar{b})^2}},$$

$$a_i = d(F_{\theta}(x^q), f_i^g), \quad b_i = d(F_{\theta}(x^{q'}), f_i^g), \quad x^{q'} = \alpha x^q + \sigma,$$

 a_i and b_i are distance vectors. x^q and $x^{q'}$ denotes the clean query image and the corresponding perturbed ones.

Mathematical form of the framework

Perturbation Energy Control:

$$\begin{cases} \alpha \leftarrow \arg\min_{\alpha'} \|\alpha - \alpha'\|_p, \ s.t. \|\frac{x^q}{\|x^q\|_p} \odot \alpha'\|_p \le \epsilon \lambda, \\ \sigma \leftarrow \arg\min_{\sigma'} \|\sigma - \sigma'\|_p, \ s.t. \|\sigma'\|_p \le \epsilon (1 - \lambda), \end{cases}$$

represents Hadamard product. λ represents the percentage of the multiplicative term. ϵ denotes the total magnitude constrain of perturbations.

Datasets: DukeMTMC-reID, Market-1501, MARS,

Evaluation Metrics : mean Drop Rate (mDR)

$$mDR = \frac{mAP(x^q) - mAP(x^{q'})}{mAP(x^q)}$$

Implementation Details:

- Models: ResNet50, DenseNet121, VGG16, SeNet154, ShuffleNet trained with BoT.
- Comparative methods: IR-UAP, GD-UAP, I-FGSM
- Experimental setting: We randomly choose 800 images for image-based datasets and 1000 tracklets for video-based dataset during perturbation training. λ is set to 0.1.
 During test, we project the perturbation on the corresponding I2 ball to satisfy the constrain of total magnitude.

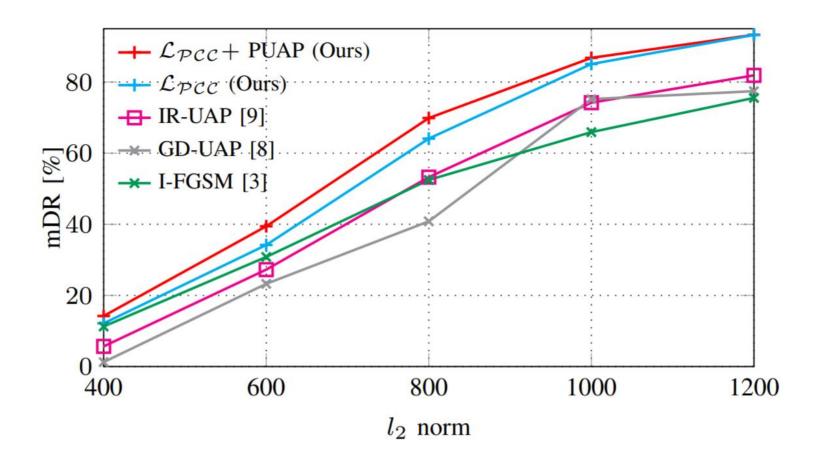


Figure: The attack performance comparison with state-of-the-art methods on DukeMTMC-reID. The red and cyan lines describe the performance of the proposed methods.

mean Drop Rate (mDR)		Market-1501					DukeMTMC-ReID				
		400	600	800	1000	1200	400	600	800	1000	1200
	\mathcal{L}_{Base}	11.47	27.81	48.90	65.58	79.18	14.66	35.82	52.47	65.92	75.54
ResNet50	\mathcal{L}_{PCC}	11.66	37.49	66.04	83.88	92.55	14.81	34.18	64.10	85.07	93.24
	+PUAP	15.07	44.18	72.46	87.65	95.31	14.21	39.45	69.88	86.80	93.29
DenseNet121	\mathcal{L}_{Base}	9.79	28.28	44.49	58.38	71.76	10.66	32.77	53.36	67.52	73.72
	LPCC	12.45	42.83	68.10	85.63	92.41	10.98	33.92	66.01	83.60	93.32
	+PUAP	17.27	48.53	71.13	88.78	94.71	17.02	41.70	68.94	86.19	93.74
Vgg16	\mathcal{L}_{Base}	25.91	57.70	74.84	86.13	92.96	19.45	51.61	75.68	85.90	91.75
	LPCC	28.22	58.15	83.71	95.60	98.24	21.43	50.63	79.87	94.59	97.79
	+PUAP	28.75	60.19	87.79	96.75	98.72	29.43	61.73	83.80	95.38	98.04
SENet154	\mathcal{L}_{Base}	13.45	32.39	48.25	63.40	72.10	11.62	26.20	43.48	57.87	67.79
	LPCC	12.00	32.43	61.02	76.90	88.41	11.35	29.35	55.66	75.38	88.21
	+PUAP	13.02	34.04	61.43	79.99	90.40	11.76	30.40	58.14	80.08	89.16
ShuffleNet	\mathcal{L}_{Base}	38.75	60.93	81.34	88.33	92.84	35.98	54.05	70.51	84.84	91.82
	LPCC	50.21	88.97	97.30	99.15	99.46	42.55	74.62	91.04	96.32	98.28
	+PUAP	56.57	91.23	98.03	99.23	99.55	45.70	79.11	92.59	96.57	98.36

Table: Experimental results (%) on Market-1501 and DukeMTMC-reID dataset. As can be seen, the proposed PUAP consistently improve the attack performance

Take Home Message

Polynomial Universal Adversarial Perturbations (PUAP) for Person Re-ID

The extension from the constant formulation of existing UAP methods to a more general polynomial case.

The introduction of Pearson correlation coefficient loss to disrupt the entire similarity rank of Re-ID.

Thanks!

Email: dingding@stu.xjtu.edu.cn; hongxiaopeng@mail.xjtu.edu.cn.