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Segmenting humans in the dynamic LiDAR Data 
with the help of motion information
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Objective
How to extract and leverage temporal features effectively
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Related Works

• Static (Single frame)

⁻ SqueezeSeg [1]

• Dynamic (Sequential frames)

⁻ Kim [2]

⁻ Meteornet [3]

The temporal information were only implicitly used.

[1] B. Wu, A. Wan, X. Yue, and K. Keutzer, “Squeezeseg: Convolutionalneural nets with recurrent crf for real-time road-object segmentationfrom 3d 

lidar point cloud,” in2018 IEEE International Conference onRobotics and Automation (ICRA). IEEE, 2018, pp. 1887–1893

[2] W. Kim, M. Tanaka, M. Okutomi, and Y. Sasaki, “Learning-based human segmentation and velocity estimation using automatic labeled lidar 

sequence for training,” IEEE Access, vol. 8, pp. 88 443–88 452, 2020.

[3] Liu X, Yan M, Bohg J. MeteorNet: Deep learning on dynamic 3D point cloud sequences[C]//Proceedings of the IEEE International Conference on 

Computer Vision. 2019: 9246-9255.
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Proposed Network Architecture
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Extract temporal features explicitly and leverage it in the 
segmentation task
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Proposed Network Architecture
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Real background LiDAR data Human walking model

Data Generation[2]

• LiDAR scanning frequency is 10 Hz.

• Each sequence consists of 32 frames.

• Each point is annotated with class and velocity information.
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Segmentation Results on 
Generated Data
• Networks are trained with 900 generated sequences.

• The length of the input sequence is 4 frame except for SqeezeSeg.
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Proposed

Meteornet[3]

Kim[2]

Fewer false 

positives at 

distance.
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Quantitative Comparison on 
Generated and Real Data

Method 
SqueezeSeg[1]

(w/o CRF) 
Kim[2] Meteornet[3] Proposed

Input depth depth xyz depth

Num of frames 1 4 4 4

Pedestrian 

mIoU (%)

Generated data 58.87 68.88 73.87 86.08

Real data 11.35 58.69 52.20 67.72

Run time (ms) 6 46 840 51
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• Proposed network outperforms previous static and dynamic method. 



Effect of the velocity estimation

• velocity map of human area

Prediction

Ground truth

Colormap

• The tendency of estimated velocities is similar to that of ground truth.
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Effect of the velocity estimation

Network Proposed

Number of frames 4

Velocity estimation loss √ √

Temporal feature propagation √ √

Generated 

data

Distance

(m) 

0 to ∞ 81.16 77.11 86.08

0 to 4 92.21 90.98 94.06

4 to 8 63.25 59.07 72.79

8 to ∞ 33.65 25.75 41.44

Real data
Distance

(m)

0 to ∞ 64.23 64.87 67.29

0 to 4 74.59 75.73 76.93

4 to 8 49.84 51.83 53.79

8 to ∞ 23.43 25.06 24.76

• Ablation study

13• Motion cues help detection in the distance.



Effect of the number of 
the input frames

Network Proposed

Number of frames 1 2 4 8 16

Generated 

data

Distance

(m) 

0 to ∞ 82.01 83.00 86.08 88.89 80.73

0 to 4 91.75 93.17 94.06 95.10 90.61

4 to 8 65.02 67.51 72.79 78.96 78.96

8 to ∞ 38.05 34.52 41.44 45.52 31.96

Real data
Distance

(m)

0 to ∞ 65.74 66.22 67.29 67.31 63.60

0 to 4 75.85 77.20 76.93 77.43 74.28

4 to 8 52.50 52.77 53.79 51.53 46.01

8 to ∞ 23.39 23.57 24.76 22.35 23.61
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• When the length is not larger than eight frames, overall, accuracy 

increases along with the increase in the number of frames



Conclusion

• Proposed a two-branch network for dynamic point 
cloud segmentation, which achieves high accuracy 
on a data set for human segmentation. 

• Temporal information contained in sequential data 
is beneficial to segmentation because motion cues 
can compensate for the sparseness of point cloud. 

• An increase in the length of sequence improves the 
performance by producing more motion cues, but 
there is a trade-off between accuracy and 
computation cost.
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