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Answer-checking in Context: A Multi-modal Fully
Attention Network for Visual Question Answering &




Multimodal Learning from Academy to Industry

CNN+LSTM structure is
widely used
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Attention-based fusion
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Joint modality embedding learning [2]
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Facebook is using Al to help blind
people 'see' the photos [4]

: We need a compact yet accurate model to land on edge devices.



Motivation and Contributions

Architecture for good accuracy
* Afully attention based VQA architecture, three attention based modules to
mimic the human behavior (reading, answering and checking) to answer a question given an image

* A multi-modal answer related attention flow

Compact Model
* A layer-wise transfer learning and smaller vet more accurate.

VQA Accuracy vs. Model Size
71.8

Large
—~ 716 —4—Proposed Method
% 7na —o— DFAF (8]
® 712 Base ® MLI-BERT [9]
3 710 MUAN [31]
S 708 MCAN-6 [32]
o 706 Tin DFAF-BERT [8]
é' 70.4
> 70.2

DFAF [8]
70.0

0 20 40 160 180 200

N%ombersgf Pa r.}ior(r)\etergz?Millilc;‘g)
Figure 1. Proposed model performance (model size and accuracy)
comparison with existing works. Our large model achieves better
accuracy with smaller model size comparing to the current state-
of-the-art model MLI-BERT [Y] on VQA-v2.0 test-standard split.



Unified Answer-question-image Attention

Previous works:

*  Modular co-attention networks [5]

* Dynamic fusion with intra-and inter-modality attention flow [6]
* Question-to-question/image attention flow
* Image-to-question/image attention flow

Our work: these attentions are performed at the same time, even with answer.
* Answer representation is updated at the same time.

Unified Answer-Question-Image Self Attention
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VQA Architecture General
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= Proposed an Interpretable Read, Answer and Check architecture for VQA.

— Read questions -> Generate Answer -> Check answer
= Transfer Learning to user 6 layer of BERT (total 12 layers)

= Achieve a state of the art results, 71.57% accuracy



VQA Architecture Detail
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= Read question -> Generate Answer -> Check answer
— Read question: language models/BERT
— Generate Answer: question-guided attention
— Check answer: answer-question-image self attention.

= Each module has its physical representation. This research work helps to
improve language+vision applications.



VQA Performance Summary

STATE-OF-THE-ART ACCURACY COMPARISON ON A SINGLE-MODEL FOR

THE TEST-DEV AND TEST-STANDARD SPLITS. THE RESULTS ARE

COLLECTED FROM THE VQA-V2.0 COMPETITION SERVER. THE MODEL IS
TRAINED ON VQA V2.0 TRAINING DATASET, VALIDATION DATASET AND

VISUAL GENOME DATASET.

test-dev test-std
Model YN No. Other All | Al
BUAI7] 81.8  44.2 56.1 65.32 65.67
BAN [13] 85.3 50.9 60.3 69.52 -
BAN-C [13] 85.4 540 60.5 70.04 70.35
DFAF [3] 86.1 53.3 60.5 70.22 70.34
DFAF-BERT [3] 86.7 52.9 61.0 70.59 70.81
MCAN [8] 86.8 53.3 60.7 70.63 70.90
MUAN [26] 86.8 544 60.9 70.82 71.10
MLI [6] 86.0 529 604 71.28 70.28
MLI-BERT [6] 87.1 53.4 60.5 71.09 71.27
Unified-VLP [33] | 87.4 52.1 60.5 70.6 70.7
Visual-BERT [4] — — - 70.8 71.0
VIIBERT [3] - - - 70.6 70.9
QBN [34] 87.1 5293 60.8 70.8 71.0
ARAC-4-GloVe 859 525 60.5 70.06 70.40
ARAC-4-BERT-1 | 86.8 53.0 61.2 70.81 71.03
ARAC-5-BERT-6 | 87.4 54.1 61.6 71.34 71.57

We achieve a state-of-the-art performance 71.57% accuracy

!

NUMBER OF MODEL PARAMETERS COMPARISON INCLUDING WORD
EMBEDDING ON VQA-V2.0 VALIDATION DATASET

Model Name Model Size  Size Ratio  Acc (%)
BAN-4 [13] 44 8M 0.76 65.81
MCAN-6]8] S56M 0.95 67.20
MUAN-768 [26] 83M 1.40 67.28
MUAN-1024 [26] 141.6 2.39 67.30
DFAF [3] 63.2M 1.07 66.66
DFAF-BERT |[3] 173.2M 2.93 B
MLI-BERT [6] 120M 2.03 67.83
ARAC-4-GloVe 34.4M 0.58 66.89
ARAC-4-BERT-1 59.2M 1 67.48
ARAC-5-BERT-6 101.0M 1.71 68.14

!

Provide a smaller model and better accuracy comparing to
existing works.



Answer check figures: Visualization

Q: What is the woman holding in her right

hand?
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