
Exploring the ability of CNNs to generalise to
previously unseen scales over wide scale ranges

Ylva Jansson and Tony Lindeberg

Computational Brain Science Lab
Division of Computational Science and Technology

KTH Royal Institute of Technology
Stockholm, Sweden

ICPR 2020: International Conference on Pattern Recognition
January 10-15, 2021.

Ylva Jansson and Tony Lindeberg Deep networks that generalize to previously unseen scales



Topic: Handling scaling variations in deep networks

Facts:

Scaling variations common in image data — because of objects of
different size in the world and at different distances to the camera

Regular CNNs perform poorly when exposed to testing data
at scales not spanned by the training data.

Goals:

Equip deep networks with prior knowledge to handle scaling
variations in image data,

specifically the ability to generalize to new scales not spanned
by the training data.

Ylva Jansson and Tony Lindeberg Deep networks that generalize to previously unseen scales



Topic: Handling scaling variations in deep networks

We will show that:

Scale generalization is possible with scale channel networks
(without explicit use of data augmentation).
“Train for training data at some scale(s), test at any other scale.”

Scale channel networks lead to improvements in learning performance
when training on data with variable scales in the small sample regime.

Point out limitations of previous multi-scale approaches when exposed to
testing data with scale variabilities over wide scale ranges.
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Scale-channel networks

Classical computer vision — Scale-space theory:

Multi-scale processing by convolving given image with Gaussian kernels
and Gaussian derivatives over multiple scales.

Scale-channel networks:

Apply same CNN to multiple rescaled copies of any image,
with shared weights between the scale channels.

Mathematically:

Convolution of given image with rescaled filters is
computationally equivalent to
applying fixed-size filter to multiple rescaled copies of the input image.
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Scale-channel networks

Networks over multiple scale channels:

FovMax - with max pooling over the multiple scale channels.

FovAvg - with average pooling over the multiple scale channels.

(a) Architecture relative to the image frames as being processed.

(b) Architecture relative to the original image frame.

(c) Foveal scale-space model by Lindeberg and Florack (1994).
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Continuous formalism for scale-channel networks

With scaling operator Ss defined by

(Ssf )(x) = f (S−1
s x) = fs(x) = f ( x

s ).

and feature maps Γ(i), such scale channel networks are scale covariant:

(Γ(i)St f )(x , c, s) = (Γ(i)f )(x , c, st).

“Resizing of the input image corresponds to a mere shift
in the scale channels of the scale channel network.”

Proof in paper based on both (i) operator notation for the scaling group
and (ii) an integral representation of the scale channel network.

Translational covariance: With shift operator (Dδf )(x) = f (x − δ)

(Γ(i)Dδ f )(x , c, s) = (Γ(i)f )(x − Ssδ, c, s).

“Translational shift is rescaled depending upon the scale channel.’

Ylva Jansson and Tony Lindeberg Deep networks that generalize to previously unseen scales



Scale-invariant scale-channel networks

Given an infinite number of scale channels, either continuous or discrete γ i

for γ > 1, the supremum over the scale channels

(Λsupf )(x , c) = sup
s∈S

[(φsf )(x , c, s)]

is provably scale invariant (proof in the paper).

Any other permutation invariant pooling operation, such as the average,
is also provably scale invariant.

Given a finite number of scale levels in an implementation, we propose to
ensure that there is a sufficient number of additional scale levels around
the training scale(s), with the intention that the learning scheme should learn
that the image structures that occur at scales that are a bit off are less
relevant, and thus lead to lower values of the feature maps, to reduce the risk
that wrong classification results at wrong scales affect the performance.
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MNISTLargeScale dataset

Images from the original MNIST dataset 28× 28 rescaled by factors
between 1/2 and 8 and embedded in images of size 112× 112.

Training data for sizes 1, 2 and 4.

Testing data for sizes between 1/2 and 8 with relative size ratio 4
√

2.

50 000 training images, 10 000 testing images, 10 000 validation images.

Ylva Jansson and Tony Lindeberg Deep networks that generalize to previously unseen scales



Performance of a vanilla CNN

8 conv-batchnorm-ReLU blocks + fully connected layer + final softmax
16-16-16-16-32-32-32-32-100-10 feature channels (≈ 90 000 parameters)
stride 2 in convolutional layers 2, 4, 6 and 8
Trained for each one of sizes 1, 2 and 4
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Poor generalization to previously unseen scales (no invariance mechanism)

Ylva Jansson and Tony Lindeberg Deep networks that generalize to previously unseen scales



Performance of a scale concatenated network

Proposed by Xu et al “Scale-invariant convolutional neural networks” (2014)
4 conv-batchnorm-ReLU blocks + fully connected layer + final softmax layer
16-16-32-32-100-10 feature channels (≈ 70 000 parameters)
stride 2 in convolutional layers 2 and 4
Trained for each one of sizes 1, 2 and 4
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Poor generalization to previously unseen scales (no invariance mechanism)
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Performance of the FovMax and FovAvg networks

4 conv-batchnorm-ReLU blocks + fully connected layer + final softmax layer
16-16-32-32-100-10 feature channels (≈ 70 000 parameters)
stride 2 in convolutional layers 2 and 4
Trained for each one of sizes 1, 2 and 4
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The invariance mechanism gives excellent generalization to previously
unseen scales.
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Performance of a sliding window approach

Sliding windows used in the OverFeat detector by Sermanet et al. (2013).
4 conv-batchnorm-ReLU blocks + fully connected layer + final softmax layer
16-16-32-32-100-10 feature channels (≈ 70 000 parameters)
stride 2 in convolutional layers 2 and 4
Trained for each one of sizes 1, 2 and 4
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Some scale generalization but not as good as for FovMax and FovAvg.
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Dependency on the scale sampling density

FovMax and FovAvg networks trained with
scale sampling rates of 2,

√
2 and 4
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2 is appropriate sampling rate, going to 4
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2 gives no major improvement.
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Training over multiple scales

Training data with uniform distribution over sizes between 1 and 4.
Testing data with similar distribution over sizes between 1/2 and 8.
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The vanilla CNN and the scale concatenation network are very much helped
by training over multiple scales.

For the FovMax and FovAvg networks, training at a single scale is basically
as good as training over multiple scales (see paper for details).
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Small training sets with large scale variations

Training data with uniform distribution over sizes between 1 and 4.
Testing data with similar distribution over sizes between 1 and 4.
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The FovMax and FovAvg networks make more efficient use of
small amounts of training data that contain large scale variability.
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Summary and conclusions

Presented methodology to handle scaling transformations in deep
networks by scale channel networks.

Presented formalism to analyse scale channel networks and shown that
they are scale covariant and translationally covariant.

Combined with max pooling or average pooling over the scale channels,
the foveated scale channel networks are also provably scale invariant .

Shown that the FovMax and FovAvg are robust to scaling
transformations and allow for scale generalization, with very good
testing performance at scales not spanned by the training data.

Investigated limited scale generalization performance of vanilla CNNs,
scale concatenation networks and sliding window networks.

Demonstrated that the FovMax and FovAvg networks lead to
improvements for multi-scale training data in the small sample regime.
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Further material on this topic

Jansson and Lindeberg (2020) “Exploring the ability of CNNs to
generalise to previously unseen scales over wide scale ranges”,
arXiv preprint arXiv:2004.01536.
Theoretical relationships to scale-space theory:

I Show that if the learning algorithm would learn receptive fields
corresponding to Gaussian derivatives, then the relationships
between the such receptive fields over different scale channels
are computationally equivalent to the effect of computing
scale-normalized derivatives over multiple scales.

I The net effect of max pooling or average pooling over the scale
channels has structural similarities to
classical methods for scale selection.

Y. Jansson and T. Lindeberg (2020) “MNISTLargeScale dataset”,
Available at: https://www.zenodo.org/record/3820247.
DOI:10.5281/zenodo.3820247.
The MNISTLargeScale dataset available for download.
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Further material on this topic

Lindeberg (2020) “Scale-covariant and scale-invariant Gaussian
derivative networks”, arXiv preprint arXiv:2011.14759.
Dual scale channel structure developed for Gaussian derivative
networks, which instead preserve the same image resolution
at all scale levels.
Based on rescaling the filters as opposed to rescaling the input images.

Finnveden, Jansson and Lindeberg (2021) “Understanding when spatial
transformer networks do not support invariance, and what to do about
it”, International Conference on Pattern Recognition (ICPR2020).
Describes limitations of spatial transformer networks that are based on
plain transformations of feature maps. They do, in general, not support
true invariances, which also affects the classification performance.
In the paper, we explore alternative approaches to remedy this problem.
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