Int. Conf. on Pattern Recognition (ICPR) 2020

PowerHC: non linear normalization of distances for advanced nearest neighbor classification

Manuele Bicego, Mauricio Orozco-Alzate University of Verona (Italy), Universidad Nacional de Colombia (Colombia) manuele.bicego@univr.it, morozcoa@unal.edu.co

The nearest neighbor rule

 The simplest classification technique: it assigns the testing object to the class of the most similar object of the training set (the nearest neighbor)

The nearest neighbor rule

- Many advantages:
 - Accurate: non linear classifier
 - No parameters
 - It works also for non vectorial data
 - Many theoretical results available

• Simple and interpretable

Crucial need in recent years:

eXplainable Artificial Intelligence!

Variants of Nearest Neighbor

- Several variants have been proposed in literature to improve this technique (Condensing, Editing, Adaptation, Discriminative information...)
- Among others, there are two interesting variants based on a similar idea:
 - **ANN**: the Adaptive Nearest Neighbor rule (Wang et al. 2007)
 - HC: the Hypersphere Classifier (Lopes et al. 2015)

• **Starting observation**: Some training objects are "better" than others for the NN rule

Points which are **far away from other classes** are more "trustable" that points which are not

 ANN and HC quantify this concept by defining the radius of a training point: "The distance from its nearest object of another class"

The larger the radius the more trustable (the better) the point

- ANN and HC employ a mechanism to favour in the NN rule "better" training points
- In practice, HC and ANN use the radius to correct the distances from the testing object:
 - Better points become nearer to the testing objects than other points

Better points \rightarrow nearer Worst points \rightarrow farther

Better points \rightarrow nearer Worst points \rightarrow farther

HC rule:
$$d_{HC}(\mathbf{x}^{te}, \mathbf{x}_i^{tr}) = d(\mathbf{x}^{te}, \mathbf{x}_i^{tr}) - \text{radius}(\mathbf{x}_i^{tr})$$

ANN rule: $d_{ANN}(\mathbf{x}^{te}, \mathbf{x}_i^{tr}) = \frac{d(\mathbf{x}^{te}, \mathbf{x}_i^{tr})}{\text{radius}(\mathbf{x}_i^{tr})}$

The distance from points with large radius will be reduced more than that of points with a small radius (i.e. a training point with a larger radius will be preferred)

Relation between HC and ANN

 Recently it has been shown that the relation between HC and ANN is based on logarithms

> ANN is the HC rule applied to distances which have been **non linearly scaled** with a logarithm function

[Orozco-Alzate et al., ICIAP19]

Relation between HC and ANN

Non linear scaling: an alternative to linear scaling

Linear scaling

Z-score standardization

$$x^{new} = \frac{x - \mu_j}{\sigma_j}$$

Non linear scaling $x^{new} = x^{\rho} \quad (\rho > 0)$ Power $x^{new} = \begin{cases} \frac{x^{\lambda} - 1}{\lambda} & \text{if } \lambda \neq 0\\ \log(x) & \text{otherwise} \end{cases}$ Box-Cox Logistic $x^{new} = \frac{1}{1 + e^{-x}}$ $x^{new} = \log(x)$ Logarithm

Relation between HC and ANN

- It has been shown that non linear scaling of feature spaces can be useful for classification
- Further, it has been shown that non linear scaling of distances can be useful for some distance-based classifiers

Carli et al ICCV2009W Carli et al ICPR2010 Bicego et al Neurocomputing 2016 Duin et al S+SSPR2014 Orozco-Alzate et al S+SSPR2016

The PowerHC rule

- ANN rule is the HC rule applied to distances scaled with logarithm
- What about investigating **other non linear scalings**?
 - Logistic transformation
 - Power transformation

The PowerHC rule

- ANN rule is the HC rule applied to distances scaled with logarithm
- What about investigating other non linear scalings?
 - Logistic transformation
 - Power transformation

Best variant for non linear scaling of feature spaces

Almost never used for distances

The Power-HC rule!

The powerHC rule

 The rule performs a non linear scaling of the distances using the power transform before applying the HC rule

powerHC rule: $d_{\rho HC}(\mathbf{x}^{te}, \mathbf{x}_i^{tr}) = d(\mathbf{x}^{te}, \mathbf{x}_i^{tr})^{\rho} - \operatorname{radius}(\mathbf{x}_i^{tr})^{\rho}$

In other words: distances are normalized via the **power transform**

All details in the paper!

Experimental evaluation

 We tested PowerHC using 24 standard UCI-ML datasets (of different dimensionality, cardinality and number of classes)

Moreover we tested PowerHC on a real world challenging problem (classification of **seismicvolcanic signals**)

We used DTW/Euclidean distances between spectrograms

Experimental evaluation

- We compared PowerHC with ANN and HC
 - PowerHC: the power p varies between 0.2 and 10 (step 0.2)
 - We report both accuracies for the best $\rho\,$ and accuracies for automatically estimated $\rho\,$
- We used both NN and K-NN
- We evaluate statistical significance of differences with a statistical test

TABLE II

ACCURACIES, AS PERCENTAGES, ALONG WITH STANDARD ERRORS FOR 50 REPETITIONS AND T-TESTS AT 5% OF SIGNIFICANCE FOR THE COMPARED METHODS WHEN USING NN FOR DECISION. ARROWS POINT TO THE BEST METHOD WHEN DIFFERENCES ARE SIGNIFICANT.

> Mathad	Accuracies					t-tests		7			
Method	A	B	C	D	110	B vs D	C vs D	1			
vataset	NN 68 72 ± 0.20	NN-ANN 71.22±0.20	NN-HC 71.58±0.20	NN-Power	THC (1)	Daiaat 2	Deiest 2	-			
german-credit	68.72 ± 0.29 69.70 ± 0.33	71.32 ± 0.29 72.43±0.32	71.38 ± 0.29 72.70 ± 0.32	72.59 ± 0.28 (μ	= 6.2)	Reject Z	Reject 7				
tic-tac-too	7052 ± 0.26	72.45±0.52	83.04±0.24	73.34±0.32 (μ 84.36±0.23 (μ	-5.8	Reject Z	Reject 7				
tic-tac-toe	51.02 ± 0.26	80.80±0.25	83.04±0.24	84.30±0.25 (μ) = 3.8)	Reject/	Reject	1			
yeast	57.88±0.48										
hoart	76 55 + 0.49						т	ABLE III			
haborman	66 32 +0 54	ACCURACIE	S AS DEDCEN	TAGES ALON	WITH ST		EPPOPS FO	P 50 PEPETITIC	NS AND T-TESTS AT 5% O	E SIGNIEICAI	NCE FOR TH
udba	05.06±0.18	Accorden	METHODS WH	EN USING KN	IN FOR DE	CIEION	A DROWS DO	INT TO THE DE	AS AND PIESIS AT 5 % C	ENCES ADE	SIGNIFICANS
ecoli	81 79+0.42		METHODS wh	EN USING A N	IN FOR DE	cision.	ARROWS PU	INT TO THE BE	ST METHOD WHEN DIFFER	LENCES ARE 3	SIGNIFICAN
volcano DTW	72.55+0.27							Accuraciae		t_te	aete
glass	68.50 ± 0.64			Mathod	-		D	Accuracies	D	1-10	1
sonar	83.44+0.52		D. L. L	Method						B vs D	C vs D
iris	93.33+0.41		Dataset		KNN	N P	NN-ANN	K NN-HC	KNN-PowerHC		
liver	61.45 ± 0.52		★ german	-credit	73.82±0	0.28 7	2.75 ± 0.28	73.22±0.28	$74.22 \pm 0.28 \ (\rho = 8.8)$	Reject /	Reject /
vehicles	69.11 ± 0.32		★ tic-ta	c-toe	83.37±0	0.24 8	2.66 ± 0.24	83.04±0.24	$84.36 \pm 0.23 \ (\rho = 5.8)$	Reject >	Reject >
malavsia	70.64 ± 0.53		\star arrhyt	hmia	63.00±	0.47 6	1.57 ± 0.47	64.98±0.47	$68.89 \pm 0.45 \ (\rho = 1.8)$	Reject >	Reject /
ionosphere	85.21±0.38		\star haberm	an	75.03±	0.49 7	4.64±0.50	74.76±0.50	$75.26 \pm 0.49 \ (\rho = 2.0)$	Reject >	Reject >
wpbc	65.59 ± 0.68		★ liver		63.74±0	0.52 6	2.48 ± 0.52	64.15±0.52	$65.08 \pm 0.51 \ (\rho = 2.8)$	Reject >	Reject >
wine	95.00±0.33		★ volcan	DTW_	73.62±0	0.27 7	8.78±0.25	80.95±0.24	$82.19 \pm 0.23 \ (\rho = 2.2)$	Reject /	Reject >
											ept
			▲ sonar ▲ malaysi	.â	83.44±0 70.64±0	0.52 8 0.53 6 0.25 6	4.82±0.50 9.05±0.54	84.49±0.50 68.72±0.54	84.85 \pm 0.50 (ρ = 0.2) 69.08 \pm 0.54 (ρ = 0.2) 04.42 \pm 0.27 (ρ = 0.2)	Accept Accept	ept Reject / Reject /
			▲ sonar ▲ malaysi ▲ iris	a	83.44± 70.64± 95.25±	0.52 8 0.53 6 0.35 9	4.82±0.50 9.05±0.54 4.40±0.38	84.49±0.50 68.72±0.54 93.89±0.39	84.85 \pm 0.50 (ρ = 0.2) 69.08 \pm 0.54 (ρ = 0.2) 94.43 \pm 0.37 (ρ = 0.2)	Accept Accept Accept	Reject A Reject A Reject A
			▲ sonar ▲ malaysi ▲ iris	a	83.44±0 70.64±0 95.25±0 96.14±0	0.52 8 0.53 6 0.35 9 0.16 9	4.82±0.50 9.05±0.54 4.40±0.38	84.49±0.50 68.72±0.54 93.89±0.39 96.39±0.16	84.85 \pm 0.50 (ρ = 0.2) 69.08 \pm 0.54 (ρ = 0.2) 94.43 \pm 0.37 (ρ = 0.2) 96.44 \pm 0.16 (ρ = 1.6)	Accept Accept Accept Accept	Reject A Reject Reject A Reject A Accept
			▲ sonar ▲ malaysi ▲ iris ▲ wdbc	a	83.44±0 70.64±0 95.25±0 96.14±0	0.52 8 0.53 6 0.35 9 0.16 9	4.82±0.50 9.05±0.54 4.40±0.38 6 30±0.16	84.49±0.50 68.72±0.54 93.89±0.39 96.39±0.16 76.31±0.61	84.85 \pm 0.50 (ρ = 0.2) 69.08 \pm 0.54 (ρ = 0.2) 94.43 \pm 0.37 (ρ = 0.2) 96.44 \pm 0.16 (ρ = 1.6) 76.41 \pm 0.61 (ρ = 8.2)	Accept Accept Accept Accept Accept	Reject × Reject × Reject × Accept Accept
NNPowerHC-Be	est NNPawerH	C-Auto	▲ sonar ▲ malaysi ▲ iris	.a KNNPowerH	83.44±0 70.64±0 95.25±0 06.14±0	0.52 8 0.53 6 0.35 9 0.16 0	4.82±0.50 9.05±0.54 4.40±0.38 6 30±0 16 CAuto	84.49±0.50 68.72±0.54 93.89±0.39 96.39±0.16 76.31±0.61 55.28±0.29	84.85 \pm 0.50 (ρ = 0.2) 69.08 \pm 0.54 (ρ = 0.2) 94.43 \pm 0.37 (ρ = 0.2) 96.44 \pm 0.16 (ρ = 1.6) 76.41 \pm 0.61 (ρ = 8.2) 55.35 \pm 0.29 (ρ = 0.8)	Accept Accept Accept Accept Accept Accept	Reject × Reject × Reject × Accept Accept Accept
NNPowerHC-Be	est NNPowerH	C-Auto	▲ sonar ▲ malaysi ▲ iris	.a KNNPowerH	83.44±0 70.64±0 95.25±0 06.14±0	0.52 8 0.53 6 0.35 9 0.16 0	4.82±0.50 9.05±0.54 4.40±0.38 6.30±0.16	$\begin{array}{r} 84.49 {\pm} 0.50 \\ 68.72 {\pm} 0.54 \\ 93.89 {\pm} 0.39 \\ 96.39 {\pm} 0.16 \\ 76.31 {\pm} 0.61 \\ 55.28 {\pm} 0.29 \\ 75.73 {\pm} 0.26 \end{array}$	$\begin{array}{l} 84.85 \pm 0.50 \ (\rho = 0.2) \\ 69.08 \pm 0.54 \ (\rho = 0.2) \\ 94.43 \pm 0.37 \ (\rho = 0.2) \\ 96.44 \pm 0.16 \ (\rho = 1.6) \\ 76.41 \pm 0.61 \ (\rho = 8.2) \\ 55.35 \pm 0.29 \ (\rho = 0.8) \\ 75.79 \pm 0.26 \ (\rho = 3.0) \end{array}$	Accept Accept Accept Accept Accept Accept Accept	Reject A Reject Reject A Reject A Accept Accept Accept Accept
NNPowerHC-Be	est NNPowerH	C-Auto	▲ sonar ▲ malaysi ▲ iris	.a KNNPowerH	83.44±0 70.64±0 95.25±0 96.14±0 C-Best	0.52 8 0.53 6 0.35 9 0.16 0	4.82±0.50 9.05±0.54 4.40±0.38 6.30±0.16 C-Auto	$\begin{array}{c} 84.49 {\pm} 0.50 \\ 68.72 {\pm} 0.54 \\ 93.89 {\pm} 0.39 \\ \hline 96.39 {\pm} 0.16 \\ 76.31 {\pm} 0.61 \\ 55.28 {\pm} 0.29 \\ 75.73 {\pm} 0.26 \\ 96.00 {\pm} 0.29 \end{array}$	$\begin{array}{l} 84.85 \pm 0.50 \ (\rho = 0.2) \\ 69.08 \pm 0.54 \ (\rho = 0.2) \\ 94.43 \pm 0.37 \ (\rho = 0.2) \\ 96.44 \pm 0.16 \ (\rho = 1.6) \\ 76.41 \pm 0.61 \ (\rho = 8.2) \\ 55.35 \pm 0.29 \ (\rho = 0.8) \\ 75.79 \pm 0.26 \ (\rho = 3.0) \\ 96.05 \pm 0.29 \ (\rho = 0.6) \end{array}$	Accept Accept Accept Accept Accept Accept Accept Accept	ept Reject ≯ Reject ≯ Reject ≯ Accept Accept Accept Accept Accept
NNPowerHC-Be		C-Auto	▲ sonar ▲ malaysi ▲ iris ▲ wdbc	.a KNNPowerH	83.44±(70.64±(95.25±(96.14+(0.52 8 0.53 6 0.35 9 0.16 9 KNNPowerH	4.82±0.50 9.05±0.54 4.40±0.38 6.30±0.16	$\begin{array}{c} 84.49 {\pm} 0.50 \\ 68.72 {\pm} 0.54 \\ 93.89 {\pm} 0.39 \\ \hline 96.39 {\pm} 0.16 \\ 76.31 {\pm} 0.61 \\ 55.28 {\pm} 0.29 \\ 75.73 {\pm} 0.26 \\ 96.00 {\pm} 0.29 \\ 84.41 {\pm} 0.44 \\ \end{array}$	$\begin{array}{l} 84.85 \pm 0.50 \ (\rho = 0.2) \\ 69.08 \pm 0.54 \ (\rho = 0.2) \\ 94.43 \pm 0.37 \ (\rho = 0.2) \\ 96.44 \pm 0.16 \ (\rho = 1.6) \\ 76.41 \pm 0.61 \ (\rho = 8.2) \\ 55.35 \pm 0.29 \ (\rho = 0.8) \\ 75.79 \pm 0.26 \ (\rho = 3.0) \\ 96.05 \pm 0.29 \ (\rho = 0.6) \\ 84.59 \pm 0.44 \ (\rho = 1.6) \end{array}$	Accept Accept Accept Accept Accept Accept Accept Accept Accept Accept	ept Reject ≯ Reject ≯ Accept Accept Accept Accept Accept Accept Accept
NNPowerHC-Be		C-Auto	▲ sonar ▲ malaysi ▲ iris ▲ wdba	.a KNNPowerH	83.44±(70.64±(95.25±(96.14+(0.52 8 0.53 6 0.35 9 0.16 9 KNNPowerH	4.82±0.50 9.05±0.54 4.40±0.38 6.30±0.16	84.49±0.50 68.72±0.54 93.89±0.39 96.39±0.16 76.31±0.61 55.28±0.29 75.73±0.26 96.00±0.29 84.41±0.44 68.74±0.32	$\begin{array}{l} 84.85 \pm 0.50 \ (\rho = 0.2) \\ 69.08 \pm 0.54 \ (\rho = 0.2) \\ 94.43 \pm 0.37 \ (\rho = 0.2) \\ 96.44 \pm 0.16 \ (\rho = 1.6) \\ 76.41 \pm 0.61 \ (\rho = 8.2) \\ 55.35 \pm 0.29 \ (\rho = 0.8) \\ 75.79 \pm 0.26 \ (\rho = 3.0) \\ 96.05 \pm 0.29 \ (\rho = 0.6) \\ 84.59 \pm 0.44 \ (\rho = 1.6) \\ 69.3 \pm 0.32 \ (\rho = 9.8) \end{array}$	Accept Accept Accept Accept Accept Accept Accept Accept Accept Accept Accept	ept Reject ≯ Reject ≯ Accept Accept Accept Accept Accept Accept Accept Accept
		C-Auto	▲ sonar ▲ malaysi ▲ iris ▲ wdba		83.44±(70.64±(95.25±(96.14+(C-Best	0.52 8 0.53 6 0.35 9 0.16 9 KNNPowerH	4.82±0.50 9.05±0.54 4.40±0.38 6.30±0.16	$\begin{array}{r} 84.49 {\pm} 0.50 \\ 68.72 {\pm} 0.54 \\ 93.89 {\pm} 0.39 \\ 96.39 {\pm} 0.16 \\ 76.31 {\pm} 0.61 \\ 55.28 {\pm} 0.29 \\ 75.73 {\pm} 0.26 \\ 96.00 {\pm} 0.29 \\ 84.41 {\pm} 0.44 \\ 68.74 {\pm} 0.32 \\ 91.73 {\pm} 0.40 \end{array}$	$\begin{array}{l} 84.85 \pm 0.50 \ (\rho = 0.2) \\ 69.08 \pm 0.54 \ (\rho = 0.2) \\ 94.43 \pm 0.37 \ (\rho = 0.2) \\ 96.44 \pm 0.16 \ (\rho = 1.6) \\ 76.41 \pm 0.61 \ (\rho = 8.2) \\ 55.35 \pm 0.29 \ (\rho = 0.8) \\ 75.79 \pm 0.26 \ (\rho = 3.0) \\ 96.05 \pm 0.29 \ (\rho = 0.6) \\ 84.59 \pm 0.44 \ (\rho = 1.6) \\ 69.3 \pm 0.32 \ (\rho = 9.8) \\ 91.79 \pm 0.40 \ (\rho = 0.8) \end{array}$	Accept Accept Accept Accept Accept Accept Accept Accept Accept Accept Accept Accept	ept Reject ≯ Reject ≯ Accept Accept Accept Accept Accept Accept Accept Accept Accept
		C-Auto	▲ sonar ▲ malaysi ▲ iris ▲ udbo		83.44±(70.64±(95.25±(96.14+(0.52 8 0.53 6 0.35 9 0.16 9 KNNPowerH	4.82±0.50 9.05±0.54 4.40±0.38 6.30±0.16	$\begin{array}{r} 84.49 {\pm} 0.50 \\ 68.72 {\pm} 0.54 \\ 93.89 {\pm} 0.39 \\ 96.39 {\pm} 0.16 \\ 76.31 {\pm} 0.61 \\ 55.28 {\pm} 0.29 \\ 75.73 {\pm} 0.26 \\ 96.00 {\pm} 0.29 \\ 84.41 {\pm} 0.44 \\ 68.74 {\pm} 0.32 \\ 91.73 {\pm} 0.40 \\ 81.62 {\pm} 0.66 \end{array}$	$\begin{array}{l} 84.85 \pm 0.50 \ (\rho = 0.2) \\ 69.08 \pm 0.54 \ (\rho = 0.2) \\ 94.43 \pm 0.37 \ (\rho = 0.2) \\ 96.44 \pm 0.16 \ (\rho = 1.6) \\ 76.41 \pm 0.61 \ (\rho = 8.2) \\ 55.35 \pm 0.29 \ (\rho = 0.8) \\ 75.79 \pm 0.26 \ (\rho = 3.0) \\ 96.05 \pm 0.29 \ (\rho = 0.6) \\ 84.59 \pm 0.44 \ (\rho = 1.6) \\ 69.3 \pm 0.32 \ (\rho = 9.8) \\ 91.79 \pm 0.40 \ (\rho = 0.8) \\ 81.79 \pm 0.66 \ (\rho = 1.2) \end{array}$	Accept Accept Accept Accept Accept Accept Accept Accept Accept Accept Accept Accept Accept	ept Reject ≯ Reject ≯ Accept Accept Accept Accept Accept Accept Accept Accept Accept Accept Accept Accept
			A sonar A malaysi A iris A wdba 100 90 - 80 - 80 -		83.44±(70.64±(95.25±(96.14+(0.52 8 0.53 6 0.35 9 0.16 9 KNNPowerH	4.82±0.50 9.05±0.54 4.40±0.38 6.30±0.16	$\begin{array}{r} 84.49 \pm 0.50 \\ 68.72 \pm 0.54 \\ 93.89 \pm 0.39 \\ 96.39 \pm 0.16 \\ 76.31 \pm 0.61 \\ 55.28 \pm 0.29 \\ 75.73 \pm 0.26 \\ 96.00 \pm 0.29 \\ 84.41 \pm 0.44 \\ 68.74 \pm 0.32 \\ 91.73 \pm 0.40 \\ 81.62 \pm 0.66 \\ \hline 93.43 \pm 0.26 \end{array}$	84.85 \pm 0.50 (ρ = 0.2) 69.08 \pm 0.54 (ρ = 0.2) 94.43 \pm 0.37 (ρ = 0.2) 96.44 \pm 0.16 (ρ = 1.6) 76.41 \pm 0.61 (ρ = 8.2) 55.35 \pm 0.29 (ρ = 0.8) 75.79 \pm 0.26 (ρ = 3.0) 96.05 \pm 0.29 (ρ = 0.6) 84.59 \pm 0.44 (ρ = 1.6) 69.3 \pm 0.32 (ρ = 9.8) 91.79 \pm 0.40 (ρ = 0.8) 81.79 \pm 0.66 (ρ = 1.2) 93.92 \pm 0.25 (ρ = 0.2)	Accept Accept Accept Accept Accept Accept Accept Accept Accept Accept Accept Accept Accept Accept	ept Reject ≯ Reject ≯ Accept Accept Accept Accept Accept Accept Accept Accept Accept Accept Accept Accept Accept
		C-Auto	A sonar A malaysi A iris A wdba 100 90 - 80 - 70 - 70 -		83.44±(70.64±(95.25±(95.25±(C-Best	0.52 8 0.53 6 0.35 9 0.16 0 KNNPowerH	4.82±0.50 9.05±0.54 4.40±0.38 6 30±0 16	$\begin{array}{r} 84.49 \pm 0.50 \\ 68.72 \pm 0.54 \\ 93.89 \pm 0.39 \\ \hline 96.39 \pm 0.16 \\ 76.31 \pm 0.61 \\ 55.28 \pm 0.29 \\ 75.73 \pm 0.26 \\ 96.00 \pm 0.29 \\ 84.41 \pm 0.44 \\ 68.74 \pm 0.32 \\ 91.73 \pm 0.40 \\ 81.62 \pm 0.66 \\ \hline 93.43 \pm 0.26 \\ 67.44 \pm 0.67 \\ \end{array}$	84.85 \pm 0.50 (ρ = 0.2) 69.08 \pm 0.54 (ρ = 0.2) 94.43 \pm 0.37 (ρ = 0.2) 96.44 \pm 0.16 (ρ = 1.6) 76.41 \pm 0.61 (ρ = 8.2) 55.35 \pm 0.29 (ρ = 0.8) 75.79 \pm 0.26 (ρ = 3.0) 96.05 \pm 0.29 (ρ = 0.6) 84.59 \pm 0.44 (ρ = 1.6) 69.3 \pm 0.32 (ρ = 9.8) 91.79 \pm 0.40 (ρ = 0.8) 81.79 \pm 0.66 (ρ = 1.2) 93.92 \pm 0.25 (ρ = 0.2) 68.21 \pm 0.67 (ρ = 0.2)	Accept Accept Accept Accept Accept Accept Accept Accept Accept Accept Accept Accept Accept Accept Accept Accept Accept Accept Accept	ept Reject ≯ Reject ≯ Reject ≯ Accept
		C-Auto	▲ sonar ▲ malaysi ▲ iris A wdba 100 90 - 60 - 60 - 50	.a	83.44±(70.64±(95.25±(06.14+(0.52 8 0.53 6 0.35 9 0.16 9 KNNPowerH	4.82±0.50 9.05±0.54 4.40±0.38 6 30±0 16	$\begin{array}{r} 84.49 {\pm} 0.50 \\ 68.72 {\pm} 0.54 \\ 93.89 {\pm} 0.39 \\ 96.39 {\pm} 0.16 \\ 76.31 {\pm} 0.61 \\ 55.28 {\pm} 0.29 \\ 75.73 {\pm} 0.26 \\ 96.00 {\pm} 0.29 \\ 84.41 {\pm} 0.44 \\ 68.74 {\pm} 0.32 \\ 91.73 {\pm} 0.40 \\ 81.62 {\pm} 0.66 \\ 93.43 {\pm} 0.26 \\ 67.44 {\pm} 0.67 \end{array}$	$\begin{array}{l} 84.85 \pm 0.50 \ (\rho = 0.2) \\ 69.08 \pm 0.54 \ (\rho = 0.2) \\ 94.43 \pm 0.37 \ (\rho = 0.2) \\ 96.44 \pm 0.16 \ (\rho = 1.6) \\ 76.41 \pm 0.61 \ (\rho = 8.2) \\ 55.35 \pm 0.29 \ (\rho = 0.8) \\ 75.79 \pm 0.26 \ (\rho = 3.0) \\ 96.05 \pm 0.29 \ (\rho = 0.6) \\ 84.59 \pm 0.44 \ (\rho = 1.6) \\ 69.3 \pm 0.32 \ (\rho = 9.8) \\ 91.79 \pm 0.40 \ (\rho = 0.8) \\ 81.79 \pm 0.66 \ (\rho = 1.2) \\ 93.92 \pm 0.25 \ (\rho = 0.2) \\ 68.21 \pm 0.67 \ (\rho = 0.2) \end{array}$	Accept Accept Accept Accept Accept Accept Accept Accept Accept Accept Accept Accept Accept Accept Accept Accept Accept	Ppt Reject A Reject A Reject A Accept Accept Accept Accept Accept Accept Accept Accept Accept Accept Reject Reject
		C-Auto	▲ sonar ▲ malaysi ▲ iris △ udbo 100 90 - 100 90 - 100 90 - 100 90 - 100 90 - 100 90 - 100 90 - 100 90 - 100 100 100 100 100 100 100 10	.a	83.44±(70.64±(95.25±(06 14+0	0.52 8 0.53 6 0.35 9 0.16 0 KNNPowerH	4.82±0.50 9.05±0.54 4.40±0.38 6.30±0.16 C-Auto	$\begin{array}{c} 84.49 \pm 0.50 \\ 68.72 \pm 0.54 \\ 93.89 \pm 0.39 \\ 96.39 \pm 0.16 \\ 76.31 \pm 0.61 \\ 55.28 \pm 0.29 \\ 75.73 \pm 0.26 \\ 96.00 \pm 0.29 \\ 84.41 \pm 0.44 \\ 68.74 \pm 0.32 \\ 91.73 \pm 0.40 \\ 81.62 \pm 0.66 \\ 93.43 \pm 0.26 \\ 67.44 \pm 0.67 \end{array}$	84.85 \pm 0.50 (ρ = 0.2) 69.08 \pm 0.54 (ρ = 0.2) 94.43 \pm 0.37 (ρ = 0.2) 96.44 \pm 0.16 (ρ = 1.6) 76.41 \pm 0.61 (ρ = 8.2) 55.35 \pm 0.29 (ρ = 0.8) 75.79 \pm 0.26 (ρ = 3.0) 96.05 \pm 0.29 (ρ = 0.6) 84.59 \pm 0.44 (ρ = 1.6) 69.3 \pm 0.32 (ρ = 9.8) 91.79 \pm 0.40 (ρ = 0.8) 81.79 \pm 0.66 (ρ = 1.2) 93.92 \pm 0.25 (ρ = 0.2) 68.21 \pm 0.67 (ρ = 0.2)	Accept Accept Accept Accept Accept Accept Accept Accept Accept Accept Accept Accept Accept Accept Accept Accept	ept Reject /* Reject /* Accept Accept Accept Accept Accept Accept Accept Accept Accept Accept Reject /*

Fig. 2. Comparison of Optimal (Best) vs Automatic Approach for tuning ρ in: (left) NN-PowerHC and (right) KNN-PowerHC

Main findings

- Results with NN:
 - For a large group of datasets (16 over 26) PowerHC is better than ANN, HC (with a stastical significance)
 - In most of the other cases (9 over 26) there is not a statistically significant improvement
 - In 1 case PowerHC is outperformed by ANN

Main findings

- Similar results obtained with K-NN
- Automatic tuning of the parameter is satisfactory
- The best value for the parameter is always larger than 1 (concave transformation)
 - Different from what has been found for feature space!

Conclusions

- We proposed a novel variant of the Nearest Neighbor rule
 - Distances are non linearly scaled with the power tranformation before applying the HC rule
- Experiments show that non linear scaling are indeed useful
- To be investigated further: why concave transformation?

