

Pose-aware Multi-feature Fusion Network for Driver Distraction Recognition

Mingyan Wu^{1, 2}, Xi Zhang^{1, 2}, Linlin Shen^{1, 2*}, Hang Yu³ ¹Computer Vision Institute, College of Computer Science and Software Engineering ²Guangdong Key Laboratory of Intelligent Information Processing ³Shenzhen Laboratory of IC Design for Internet of Things Shenzhen University, PR China wumingyan2018@email.szu.edu.cn, zhangxi1987see@gmail.com, {llshen, yuhang}@szu.edu.cn

Introduction

• Distracted driving is an activity that diverts attention from driving. Distracted driving is one of the major causes of traffic accidents.

Related Work

C3D: 3D convolutional network

Long-term Recurrent Convolutional Networks

Method

- The whole original image contains global information.
- The actions of hand are important cues in driver distraction recognition.
- The pose information is robust against the interference of backgrounds.

Method

Datasets

• SZ Bus Driver Dataset.

Class	Action	Training set	Test set
C0	Playing the phone	23973	5232
C1	Talking on the phone	5553	1495
C2	Smoking	14008	962
C3	Safe driving	13686	993
Total	Total	57220	8682

TABLE IDetails of SZ Bus Driver Dataset

(a) C0: Playing the phone (b) C1: Talking on the phone

(c) C2: Smoking

(d) C3: Safe driving

Datasets

• AUC Distracted Driver Dataset.

	Distracted Driver V1	Distracted Driver V2
Key Contributions	First publicly available dataset for distracted drivingTraining and testing datasets are split randomly	Collected more data with more driversMore precise labeling and better sampling per classTraining and testing datasets are split based on drivers
Dataset Information	31 drivers	44 drivers

C0: Safe Driving

C4: Phone Left

C3: Text Left

C5: Adjusting Radio

C6: Drinking

C7: Reaching Behind

C8: Hair or Makeup

Experimental Results

Feature	Backbone	C 0	C1	C2	C3	Total
Global	VGG-16	74.04	83.01	41.78	85.80	73.35
	ResNet-50	87.11	47.89	48.85	83.48	75.70
	InceptionV3	83.19	82.14	22.48	90.53	77.28
Late Fusion	VGG-16	90.84	84.55	72.25	92.45	88.78
	ResNet-50	93.12	92.78	75.36	91.14	90.87
	InceptionV3	95.85	90.63	80.87	92.74	92.93
Early Fusion	VGG-16	94.13	95.38	82.35	66.16	91.09
	ResNet-50	95.43	99.46	64.13	94.76	92.58
	InceptionV3	96.46	97.66	89.40	95.27	95.75

TABLE IIResult on SZ Bus Driver dataset

SZ Bus Driver Dataset.

TABLE III RESULT ON AUC V1 AND V2 DATASET

Dataset	Method	Accuracy
	GA-Weighted Ensemble (2017) [21]	95.98
	DenseNet+Latent Pose (2018) [23]	94.20
AUC	VGG with Regularization (2018) [10]	96.31
V 1	I3D-two stream (2019) [26]	77.10
	AlexNet+HOG features (2019) [7]	93.19
	Our method	96.28
AUC	GA-Weighted Ensemble (2019) [22]	90.07
V2	Our method	90.38

AUC Dataset.

Experimental Results

TABLE IVAblation study on three different datasets

Detect		Feature		Accuracy
Dataset	Global	Hand	Pose	Accuracy
	\checkmark			77.28
		\checkmark		85.58
			\checkmark	88.29
SZ Bus Driver		\checkmark	\checkmark	91.35
	\checkmark	\checkmark		88.68
	\checkmark		\checkmark	91.84
	\checkmark	\checkmark	\checkmark	95.75
	\checkmark			95.22
		\checkmark		90.86
			\checkmark	91.36
AUC V1		\checkmark	\checkmark	92.06
	\checkmark	\checkmark		95.65
	\checkmark		\checkmark	95.52
	\checkmark	\checkmark	\checkmark	96.28
	\checkmark			85.12
		\checkmark		67.86
			\checkmark	74.88
AUC V2		\checkmark	\checkmark	79.36
	\checkmark	\checkmark		87.15
	\checkmark		\checkmark	87.31
	\checkmark	\checkmark	\checkmark	90.38

Visualization

The t-SNE visualization of global feature for SZ dataset (a) and AUC V2 dataset (c) and that of fused feature for SZ dataset (b) and AUC V2 dataset (d).

Visualization

Phone Left

Safe Driving

Smoking

Visualization

Thanks!