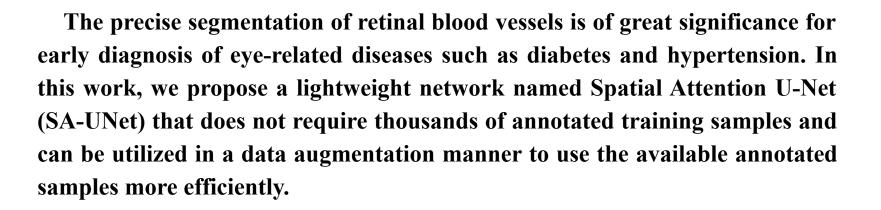


SA-UNet: Spatial Attention Network for Retinal Vessel Segmentation

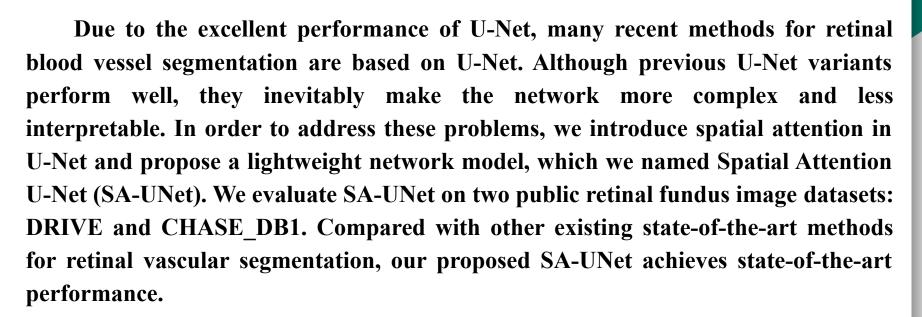
Changlu Guo*, Márton Szemenyei, Yugen Yi*, Wenle Wang, Buer Chen, Changqi Fan https://github.com/clguo/SA-UNet

clguo.ai@gmail.com

Abstract



Introduction

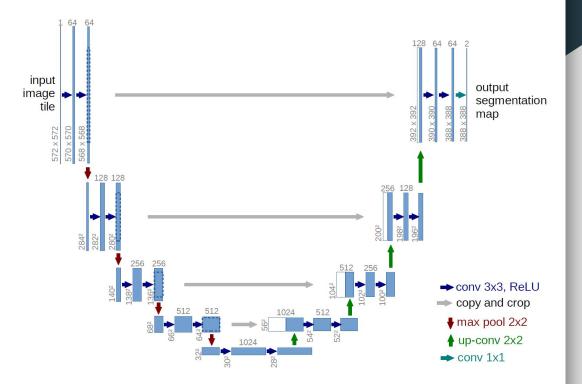


Methodology

I.

U-Net

The famous U-Net that combines coarse features with fine features through skip connections to have superior performance in the field of medical image processing.



DropBlock

Its main difference from dropout is that it drops contiguous regions from a feature map of a layer instead of dropping out independent random units

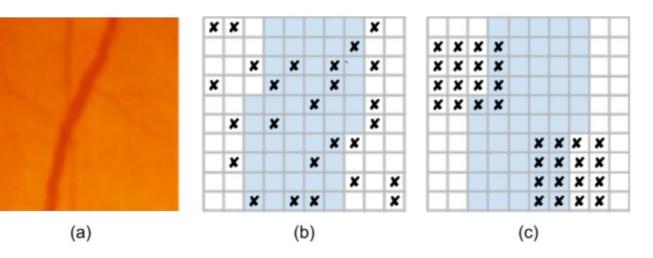
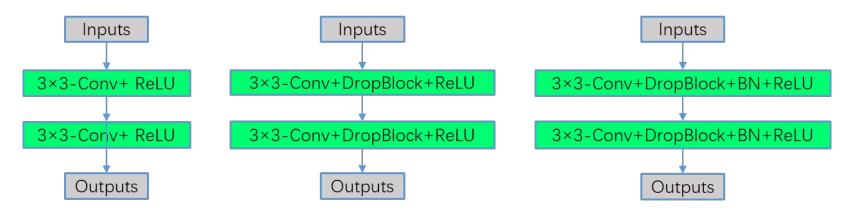


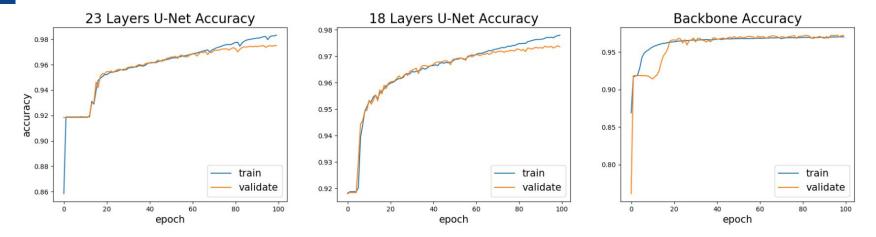
Figure 2.3: (a) A region of the original image, (b) and (c) show the dropout situation in Dropout and DropBlock respectively.

Structured Dropout Convolutional Block



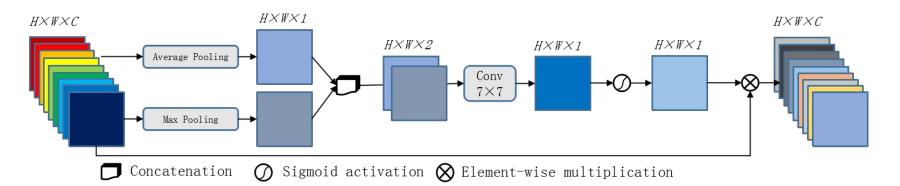
Original U-Net block (left), SD-Unet block (middle), Structured dropout convolutional block(right)

Batch normalization (BN) can improve the convergence speed of the network.



Compared to the 23 convolutional layers of the original U-Net, our Backbone has only 18 convolutional layers, and as shown in Fig. (left), the over-fitting problem is perfectly solved and accelerates the convergence of the network.

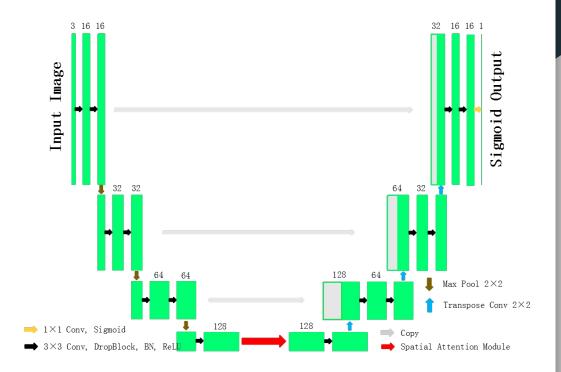
Spatial Attention Module



The spatial attention map enables the network to enhance important features (e.g. vascular features) and suppress unimportant ones

SA-UNet Architecture

SA-UNet with a U-shaped encoder (left side)-decoder (right side) structure. The spatial attention module is added between the encoder and the decoder. At the final layer, a 1×1 convolution and Sigmoid activation function is used to get the output segmentation map.



Expriments and Results

Datasets	Datasets	DRIVE	CHASE_DB1
	Obtained from	Dutch Diabetic Retinopathy Screening Program	Child Heart and Health Study
	Total number 40		28
	Train / Test number	20 / 20	20 / 8
	Resolution (pixel)	584×565	999×960
	Resize (pixel)	592×592	1008×1008
	Augmentation methods		Gaussian noise; (3) color jittering; cal and diagonal flips.

ABLATION STUDIES ON DRIVE DATASET.

Ablation Experiments

(1) Spatial attention is effective. (2) The effectiveness of adopting _____ the newly constructed structured dropout convolutional block to build the Backbone. (3) Adding the batch normalization (BN) can improve the network performance to a certain extent. (4) our SA-UNet has a much smaller amount of parameters, so for the task of retinal vessel segmentation, SA-UNet is a lightweight and effective network. Figure 4 shows the sample segmentation results of _____ different models.

Methods	SE	SP	ACC	AUC	Fl	MCC
U-Net	0.7677	0.9857	0.9666	0.9789	0.8012	0.7839
U-Net + SA	0.7883	0.9845	0.9673	0.9809	0.8085	0.7909
SD-Unet	0.7978	0.9860	0.9695	0.9858	0.8208	0.8045
Backbone	0.8246	0.9832	0.9694	0.9862	0.8254	0.8087
SA-UNet	0.8212	0.9840	0.9698	0.9864	0.8263	0.8097

TABLE IV. AMOUNT OF PARAMETERS ON DIFFERENT MODE

ELS.	TABLE III.	ABLATION STUDIES ON (CI

TABLE II.

HASE DB1 DATASET.

Models	Total	Trainable	Non-trainable
AG-Net	9,335,340	9,335,340	0
23 Layers U-Net	2,158,705	2,158,705	0
18 Layers U-Net	535,793	535,793	0
U-Net + SA	535,891	535,891	0
SD-Unet	535,793	535,793	0
Backbone	538,609	537,201	1,408
SA-UNet	538,707	537,299	1,408

Methods	SE	SP	ACC	AUC	F1	MCC
U-Net	0.7842	0.9861	0.9733	0.9838	0.7875	0.7733
U-Net + SA	0.7840	0.9865	0.9738	0.9852	0.7902	0.7763
SD-Unet	0.8297	0.9854	0.9756	0.9897	0.8109	0.7981
Backbone	0.8422	0.9844	0.9755	0.9897	0.8123	0.7997
SA-UNet	0.8573	0.9835	0.9755	0.9905	0.8153	0.8033

Comparisons with state-of-the-art methods

Dataset	DRIVE					
Metrics	Year	SE	SP	ACC	AUC	
Liskowski et .al. [15]	2016	0.7811	0.9807	0.9535	0.9790	
Orlando et. al. [16]	2017	0.7897	0.9684	0.9454	0.9507	
Yan et. al. [17]	2018	0.7653	0.9818	0.9542	0.9752	
MS-NFN [18]	2018	0.7844	0.9819	0.9567	0.9807	
DEU-Net [7]	2019	0.7940	0.9816	0.9567	0.9772	
Vessel-Net [8]	2019	0.8038	0.9802	0.9578	0.9821	
AG-Net [9]	2019	0.8100	0.9848	0.9692	0.9856	
SA-UNet	2020	0.8212	0.9840	0.9698	0.9864	

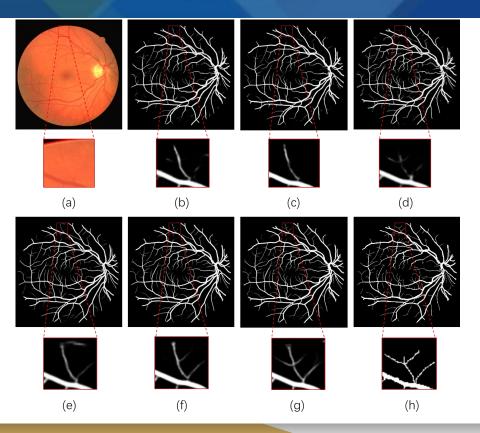
TABLE V.	RESULTS OF SA-UNET AND OTHER METHODS ON DRIVE
	DATASETS.

TABLE VI.	RESULTS OF	SA-UNET AND OTHER METHODS ON
	CHASE	DB1 DATASETS.

Datasets	CHASE_DB1						
Metrics	Year	SE	SP	ACC	AUC		
Liskowski et .al. [15]	2016	0.7816	0.9836	0.9628	0.9823		
Orlando et. al. [16]	2017	0.7277	0.9712	0.9458	0.9524		
Yan et. al. [17]	2018	0.7633	0.9809	0.9610	0.9781		
MS-NFN [18]	2018	0.7538	0.9847	0.9637	0.9825		
DEU-Net [7]	2019	0.8074	0.9821	0.9661	0.9812		
Vessel-Net [8]	2019	0.8132	0.9814	0.9661	0.9860		
AG-Net [9]	2019	0.8186	0.9848	0.9743	0.9863		
SA-UNet	2020	0.8573	0.9835	0.9755	0.9905		

Segmentation results

- (a) A test image from **DRIVE** dataset;
- (b) Segmentation result by U-Net;
- (c) Segmentation result by U-Net+SA;
- (d) Segmentation result by AG-Net;
- (e) Segmentation result by **SD-Unet**;
- (f) Segmentation result by **Backbone**;
- (g) Segmentation result by SA-UNet;
- (h) Corresponding ground truth segmentation.



Conclusion

Inspired by the successful application of DropBlock and batch normalization in convolutional neural networks, we replace the convolutional block of U-Net with a structured dropout convolutional block that integrates DropBlock and batch normalization as our Backbone. In addition, in the retinal fundus images, the difference between the blood vessel area and the background is not obvious, especially the edges and small blood vessels. To help the network learn these, we add a spatial attention module between the encoder and decoder of the Backbone and propose Spatial Attention U-Net (SA-UNet). The experimental results demonstrate that using structured dropout convolutional blocks and the introducing spatial attention are effective, and by comparing with other state-of-the-art methods for retinal vessel segmentation, our lightweight SA-UNet achieves state-of-the-art performance.

Thank You!

clguo.ai@gmail.com