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The precise segmentation of retinal blood vessels is of great significance for
early diagnosis of eye-related diseases such as diabetes and hypertension. In
this work, we propose a lightweight network named Spatial Attention U-Net
(SA-UNet) that does not require thousands of annotated training samples and
can be utilized in a data augmentation manner to use the available annotated
samples more efficiently.
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Due to the excellent performance of U-Net, many recent methods for retinal
blood vessel segmentation are based on U-Net. Although previous U-Net variants
perform well, they inevitably make the network more complex and less
interpretable. In order to address these problems, we introduce spatial attention in
U-Net and propose a lightweight network model, which we named Spatial Attention
U-Net (SA-UNet). We evaluate SA-UNet on two public retinal fundus image datasets:
DRIVE and CHASE DBI1. Compared with other existing state-of-the-art methods
for retinal vascular segmentation, our proposed SA-UNet achieves state-of-the-art

performance.
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DropBlock

Its main difference
from dropout is that it
drops contiguous
regions from a feature
map of a layer instead
of dropping out
independent random
units
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Figure 2.3: (a) A region of the original image,
(b) and (c) show the dropout situation in Dropout and DropBlock respectively.

X XXX




oK ks
“v‘ 4

() BUDAPEST UNIVERSITY OF TECHNOLOGY AND ECONOMICS

Y Faculty of Electrical Engineering and Informatics

Structured Dropout Convolutional Block

Inputs Inputs Inputs
Outputs Outputs Outputs

Original U-Net block (left), SD-Unet block (middle), Structured dropout convolutional block(right)

Batch normalization (BN) can improve the convergence speed of the network.
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Compared to the 23 convolutional layers of the original U-Net, our Backbone has only 18
convolutional layers, and as shown in Fig. (left), the over-fitting problem is perfectly solved and
accelerates the convergence of the network.
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Spatial Attention Module

HXWXC HAXTX1 HXWXC

HAXTX2 HXWX1 HXITX1

() Concatenation Q) sigmoid activation ® Element-wise multiplication

The spatial attention map enables the network to enhance important features (e.g. vascular
features) and suppress unimportant ones
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Datasets
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Datasets DRIVE CHASE DBI1
Obtained from Dutch D1ab.et1c Retinopathy Child Heart and Health Study
Screening Program
Total number 40 28
Train / Test number 20/20 20/8
Resolution 584565 999x960
(pixel)
Resize
. 592x592 1008%1008
(pixel)

Augmentation methods

(1) Random rotation; (2) adding Gaussian noise; (3) color jittering;
(4) horizontal, vertical and diagonal flips.
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. . TABLE IL. ABLATION STUDIES ON DRIVE DATASET.
Ablation Experiments
(1) Spatial attention is effective. (2) The effectiveness of adopting Methods SE SP ACC | AUC Fl MCC
the newly constructed structured dropout convolutional block to U-Net 0.7677 1 0.9857 | 0.9666 | 0.9789 | 0.8012 | 0.7839
!.’)uﬂd the Backbone. (3) Adding the batch norm.ahzatlon (BN) can U-Net + SA | 0.7883 | 0.9845 | 0.9673 | 0.9809 | 0.8085 | 0.7909
improve the network performance to a certain extent. (4) our
SA-UNet has a much smaller amount of parameters, so for the task ~ SD-Unet 0.7978 1 0.9860 | 0.9695 | 0.9858 | 0.8208 | 0.8045
of re‘Flnal vessel ‘segmentatlon, SA-UNet is a 11ghfwe1ght and Backbone | 0.8246 | 09832109694 | 0.9862 | 0.8254 | 0.8087
effective network. Figure 4 shows the sample segmentation results of
different models. SA-UNet |[0.8212 [0.9840 | 0.9698 | 0.9864 | 0.8263 | 0.8097
TABLEIV.  AMOUNT OF PARAMETERS ON DIFFERENT MODELS. TABLE IIL ABLATION STUDIES ON CHASE_DBI DATASET.
Models Total Trainable |Non-trainable T e SE Sp acc | auc Fl MCC
AG-Net 9,335,340 | 9,335,340 0 842
23 Layers U-Net| 2,158,705 | 2.158.705 0 U-Net 0.7842 | 0.9861 | 09733 | 0.9838 | 0.7875 | 0.7733
18 Layers U-Net [ 535,793 535,793 0 U-Net + SA [ 0.7840 | 0.9865 | 0.9738 | 0.9852 | 0.7902 | 0.7763
U-Net + SA 535,891 535,891 0 SD-Unet | 0.8297 | 0.9854 | 0.9756 | 0.9897 | 0.8109 | 0.7981
SD-Unet 535,793 535,793 0
% : -
Bockbone 538.609 537,201 1408 Backbone |0.8422| 0.9844 | 0.9755|0.9897 | 0.8123 | 0.7997
SA-UNet 538.707 537.299 1.408 SA-UNet |[0.8573 | 0.9835 | 0.9755]0.9905 | 0.8153 | 0.8033
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Comparisons with state-of-the-art methods

TABLE V. RESULTS OF SA-UNET AND OTHER METHODS ON DRIVE

R TABLE VL RESULTS OF SA-UNET AND OTHER METHODS ON
CHASE_DBI DATASETS,
Dataset DRIVE
Metrics Year | SE | sp | 4cc | auc Datasets CHASE_DBI
Metrics Year SE SP ACC | AUC

Liskowski et .al. [15] | 2016 | 0.7811 | 0.9807 | 0.9535 | 0.9790
Orlando et. al. [16] | 2017 | 0.7897 | 0.9684 | 0.9454 | 0.9507
Yanet. al. [17] 2018 | 0.7653 | 0.9818 | 0.9542 | 0.9752
MS-NFN [18] 2018 [ 0.7844 | 0.9819 | 0.9567 | 0.9807

Liskowski et .al. [15] | 2016 | 0.7816 | 0.9836 | 0.9628 | 0.9823
Orlando et. al. [16] | 2017 | 0.7277 | 0.9712 | 0.9458 | 0.9524
Yanet. al. [17] 2018 | 0.7633 | 0.9809 | 0.9610 | 0.9781
MS-NFN [18] 2018 | 0.7538 | 0.9847 | 0.9637 | 0.9825

DEU-Net [7] 2019 | 0.7940 | 0.9816 | 0.9567 | 0.9772 DEU-Net [7] 2019 | 0.8074 | 09821 | 0.9661 | 0.9812
Vessel-Net [8] 2019 | 0.8038 | 0.9802 | 0.9578 | 0.9821 Vessel-Net [8] 2019 | 0.8132 | 0.9814 | 0.9661 | 0.9860
AG-Net [9] 2019 | 0.8100 | 0.9848 | 0.9692 | 0.9856 AG-Net [9] 2019 | 0.8186 | 0.9848 | 0.9743 | 0.9863

SA-UNet 2020 | 0.8212 | 0.9840 | 0.9698 | 0.9864 SA-UNet 2020 | 0.8573 | 0.9835 | 0.9755 | 0.9905
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Segmentation results

(a) A test image from DRIVE dataset;
(b) Segmentation result by U-Net;

(c) Segmentation result by U-Net+SA;

(d) Segmentation result by AG-Net;

(e) Segmentation result by SD-Unet;

(f) Segmentation result by Backbone;

(g) Segmentation result by SA-UNet;

(h) Corresponding ground truth segmentation.
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Inspired by the successful application of DropBlock and batch normalization in
convolutional neural networks, we replace the convolutional block of U-Net with a
structured dropout convolutional block that integrates DropBlock and batch normalization as
our Backbone. In addition, in the retinal fundus images, the difference between the blood
vessel area and the background is not obvious, especially the edges and small blood vessels.
To help the network learn these, we add a spatial attention module between the encoder and
decoder of the Backbone and propose Spatial Attention U-Net (SA-UNet). The experimental
results demonstrate that using structured dropout convolutional blocks and the introducing
spatial attention are effective, and by comparing with other state-of-the-art methods for
retinal vessel segmentation, our lightweight SA-UNet achieves state-of-the-art performance.







