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Deep learning

Ø Standard tool to tackle 
supervised learning problems.

Ø Many state-of-the-art 
applications
Ø Image classification
Ø Object detection
Ø Image segmentation
Ø Natural language processing
Ø […]

Ø Little attention to security and 
model integrity.

https://datascience.eu/it/apprendimento-automatico/una-panoramica-di-resnet-e-delle-sue-varianti/
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Watermarking deep models
Ø Only few preliminary studies on digital watermarking applied to 

ANN. 
Ø We start from a simple solution that embeds the watermark in the 

ANN model weights:
Ø ANN models are usually highly redundant;
Ø training can be done by fixing a subset of the model weights 

(the watermark);
Ø no impact on the final ANN performance.

Ø We embed watermark in all the layers of the deep model.
Ø We train the model to make the model robust to fine-tuning attacks, 

where an adversary tries to change the model weights by running 
additional training epochs.

Ø We empirically study the effectiveness of the proposed approach by 
showing that it represents an efficient solution achieving a 
significant level of robustness to attacks without impacting on the 
ANN performance.
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Overview on the technique

Ø Watermarking is applied after 
the model is trained.

Ø We enforce robustness of the 
watermark to the most-
common attacks.
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Step 1: watermark the parameters
Ø We watermark the parameters.

Ø We already know the parameters’ 
distribution.

Ø We are sure we will not choose outliers 
in the parameters’ distribution.
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Step 1: watermark the parameters (II)

.

.

.

.

𝑊!

𝑊! Γ"

Ø Parameters are chosen 
randomly.

Ø All the learned layers 
are involved, including 
the output layer!

Ø The watermarked 
parameters are 
indicated as 𝑊!, while 
the non-watermarked 
are 𝑊!.

Ø Now on, 𝑊! will not be 
modified within the 
model Γ".
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Step 2: Delving in the loss
Ø Iteratively, we will tune the non-

watermarked parameters 𝑊! such 
that the watermarked parameters 
𝑊! will be robust to attacks:
Ø If 𝑊! parameters are modified, 

the performance of the model 
drops;

Ø Fine-tuning attacks (keeping the 
loss low) will naturally change 
values for 𝑊!, but not 𝑊!. 

Ø To achieve this, we delve in the 
loss, driving Γ" in a steep valley for 
the subspace 𝑊!.
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Ø We compute the loss over Γ"
Ø We aim at minimizing this loss 

(over 𝑊!) to keep the error low.

Step 2.1: loss on Γ!
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Ø We generate 𝑅 replicas of Γ"
Ø To these, we add some noise Δ𝑊 just to 

the watermarked parameters 𝑊!
Ø In this way, we have 𝑅 samplings at a 

small distance from Γ", in 𝑊!

Step 2.2: Generate 𝑅 replicas
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Ø For each of the 𝑅 replicas we 
compute the loss value.

Ø We aim at maximizing it.

Ø In this way we guarantee that, at a 
small distance Δ𝑊 from the 
watermark, the loss value is high.

Ø And this is how we delve in the loss 
function, looking for narrow minima 
in the subspace 𝑊!

Step 2.3: loss on Γ", Γ#, ⋯ Γ$

Delving in the loss landscape to embed robust watermarks into neural networksJan 2021 10



Ø We get a loss value from Γ" we 
minimize (positive contribution).

Ø Besides that, we get 𝑅 other loss 
contributions we aim at maximizing 
(negative contribution)

Step 2.4: Overall loss on Γ!
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Ø Finally, we update Γ".

Ø Only the non-watermarked 
parameters 𝑊! are updated: the 
watermarked ones remain freezed!

Ø Then, the process is iterated: the 
more the iterations as well as the 
replica 𝑅 used in the process, the 
best the final robustness of the 
watermark.

Step 2.5: update
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Results – ResNet32 (CIFAR-10)
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R Error on the test set (%)

0 7.14

2 7.08

4 7.29



Thank you!


