

ILS-SUMM: Iterated Local Search for Unsupervised Video Summarization

Yair Shemer

Daniel Rotman

Nahum Shimkin

Technion

IBM Research

Technion

Background

Task Definition:

Given an input video, automatically create a short video that summarizes the original video.

• In General, the goal is to enable faster consumption of video data.

Background

Example of a video summary:

Background

Common video summarization algorithm scheme:

Problem Formulation

- Given an input video v, the video is divided temporally into a set of shots $S_v = \{s_1, s_2, \dots s_N\}$
- We denote the duration in seconds of a shot s as t(s)
- Each shot is represented by its middle frame feature vector x(s)

Knapsack Median (KM) Optimization Problem

$$S_{summ}^* = \underset{S_{summ} \subseteq S_v}{\operatorname{argmin}} TD(S_{summ} | S_v, x(s)),$$

subject to:

$$\sum_{s \in S_{summ}} t(s) \le T,$$

where:

$$TD(S_{summ}|S_v, x(s)) = \sum_{s' \in S_v} \min_{s \in S_{summ}} \{ \text{dist} (x(s'), x(s)) \}$$

Iterated Local Search (ILS) framework (Baxter, 1981)

- Apply a local-search algorithm
- Repeat:
 - Perturb the current local minimum.
 - Apply a local-search after starting from the modified solution.

ILS Perturbation Mechanism:

ILS-SUMM

The perturbation we used: swap the M costly medoids with the M cheapest non-medoids

Daniel Rotman Seminar December 7, 2020 8/1

ILS-SUMM

The perturbation we used: swap the M costly medoids with the M cheapest non-medoids

Daniel Rotman Seminar December 7, 2020 8/1

Experiments: Video Summarization

Datasets:

- SumMe 25 short user videos (Gygli et al., 2014)
- TvSum 50 short user videos (Song et al., 2015)
- Open Source Total Distance (OSTD) 18 movies of various lengths

For shot segmentation we use **KTS** (Potapov et al., 2014) and **FFprobe** Python tool (Python Software Foundation, 2019).

Experiments: Video Summarization

Total Distance optimality percentage, i.e., the ratio between the optimal value and the achieved value:

	SumMe	TVSum	OSTD
DR-DSN	90.78%	82.50%	62.56%
Submodular	85.18%	94.14%	95.99%
ILS-SUMM	98.48%	99.27%	98.38%

ILS-SUMM exhibits a significant advantage

Experiments: Video Summarization

ILS-SUMM selections on Cosmos Laundromat movie:

Conclusion:

- Using deep learning is not always the right choice: for optimization problem, heuristic algorithms can work better.
- 2 Utilizing ILS framework leads to great solutions thanks to the perturbation mechanism.

- Find a better objective function.
- 2 Relax the "hard" segmentation.

Conclusion:

- Using deep learning is not always the right choice: for optimization problem, heuristic algorithms can work better.
- ② Utilizing ILS framework leads to great solutions thanks to the perturbation mechanism.

- Find a better objective function.
- 2 Relax the "hard" segmentation.

Conclusion:

- Using deep learning is not always the right choice: for optimization problem, heuristic algorithms can work better.
- ② Utilizing ILS framework leads to great solutions thanks to the perturbation mechanism.

- Find a better objective function.
- 2 Relax the "hard" segmentation.

Conclusion:

- Using deep learning is not always the right choice: for optimization problem, heuristic algorithms can work better.
- ② Utilizing ILS framework leads to great solutions thanks to the perturbation mechanism.

- Find a better objective function.
- 2 Relax the "hard" segmentation.

Conclusion:

- Using deep learning is not always the right choice: for optimization problem, heuristic algorithms can work better.
- 2 Utilizing ILS framework leads to great solutions thanks to the perturbation mechanism.

- Find a better objective function.
- 2 Relax the "hard" segmentation.

