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Related Work

Model Based Reconstruction

 Exploit the piecewise smooth property with total variation regularization, e.g., TV[1].

 Exploit spatial-spectral correlation via sparse representation, e.g., AMP[2], 3DSR[3], ANSR[4].

 Exploit spatial-spectral correlation via rank minimization, e.g., LRMA[5].

Learning Based Reconstruction

 Brute-force mapping from the compressive measurement, e.g., HSCNN[6].

 Exploit the non-linear sparsity via neuron shrinkage, e.g., AE[7], HRNet[8].

 Deep un-rolling with non-linear prior, e.g., ISTA-Net[9], SPR[10].



Motivation

Key Observation

 The vectorization process ignores the high-dimensionality nature of hyperspectral image 

and breaks the original structure.

 High-order tensors can provide a more accurate representation to figure out the data 

diversity in each domain and deliver the intrinsic structure of high-dimensionality signals.



Weighted High-order Singular Value Regularization
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Weighted High-order Singular Value Regularization

Formulation:

Adaptive weights:



Reconstruction Algorithm

Reconstruction Problem

Updating Low-rank Tensors

Updating the Whole Image

Formulation:

Problem:

Solution:

Problem:

Solution:



Experiments

Performance on CASSI

Indexes TV AMP 3DSR NSR LRMA AE ISTA HSCNN HRecNet SPR Ours

PSNR 23.16 23.18 23.636 26.13 25.94 25.72 20.60 25.09 22.83 24.48 28.05

SSIM 0.7130 0.6600 0.7311 0.7610 0.7930 0.7720 0.5499 0.7334 0.6648 0.7395 0.8302

ERGAS 258.32 256.76 245.15 189.19 195.63 197.32 344.57 206.97 268.65 224.19 153.06

RMSE 0.0469 0.0474 0.0457 0.0333 0.0315 0.0333 0.0653 0.0373 0.0496 0.0451 0.0236



Experiments

Performance on DCCHI

Indexes TV AMP 3DSR ANSR LRMA Ours

PSNR 23.16 23.18 23.636 26.13 25.94 28.46

SSIM 0.7130 0.6600 0.7311 0.7610 0.7930 0.8277

ERGAS 258.32 256.76 245.153 189.19 195.63 147.84

RMSE 0.0469 0.0474 0.0457 0.0333 0.0315 0.0240
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Thanks for your attention!


