

Snapshot Hyperspectral Imaging Based on Weighted High-order Singular Value Regularization

Niankai Cheng¹, Hua Huang², Lei Zhang¹, and Lizhi Wang¹ ¹School of Computer Science and Technology, Beijing Institute of Technology, Beijing, China ²School of Artificial Intelligence, Beijing Normal University, Beijing, China

Snapshot Hyperspectral Imaging

Core Problem

Related Work

Model Based Reconstruction

- \checkmark Exploit the piecewise smooth property with total variation regularization, e.g., TV[1].
- ✓ Exploit spatial-spectral correlation via sparse representation, e.g., AMP[2], 3DSR[3], ANSR[4].
- ✓ Exploit spatial-spectral correlation via rank minimization, e.g., LRMA[5].

Learning Based Reconstruction

- ✓ Brute-force mapping from the compressive measurement, e.g., HSCNN[6].
- ✓ Exploit the non-linear sparsity via neuron shrinkage, e.g., AE[7], HRNet[8].
- ✓ Deep un-rolling with non-linear prior, e.g., ISTA-Net[9], SPR[10].

Motivation

Key Observation

- ✓ The vectorization process ignores the high-dimensionality nature of hyperspectral image and breaks the original structure.
- ✓ High-order tensors can provide a more accurate representation to figure out the data diversity in each domain and deliver the intrinsic structure of high-dimensionality signals.

Weighted High-order Singular Value Regularization

Weighted High-order Singular Value Regularization

 $\begin{array}{ll} \text{Formulation:} & \Gamma(\boldsymbol{\mathcal{G}}) = \tau \| \mathbf{R}(\boldsymbol{\mathcal{F}}) - \boldsymbol{\mathcal{G}} \times_1 \boldsymbol{U}_1 \times_2 \boldsymbol{U}_2 \times_3 \boldsymbol{U}_3 \|_F^2 + \| \mathbf{w} \circ \boldsymbol{\mathcal{G}} \|_1 \\ \text{Adaptive weights:} & \| \mathbf{w} \circ \boldsymbol{\mathcal{G}} \|_1 = \sum_n w_n \left| g_n \right|, \ w_n^{t+1} = c / \left(\left| w_i^t \right| + \varepsilon \right) \end{array}$

Reconstruction Algorithm

Reconstruction Problem

Formulation:
$$\min_{\boldsymbol{\mathcal{F}},\boldsymbol{\mathcal{G}}_{l}} \frac{1}{2} \| \boldsymbol{Y} - \boldsymbol{\Phi}(\boldsymbol{\mathcal{F}}) \|_{F}^{2} + \sum_{l=1}^{L} \left(\tau \| \mathbf{R}_{l}(\boldsymbol{\mathcal{F}}) - \boldsymbol{\mathcal{G}}_{l} \times_{1} \boldsymbol{U}_{l,1} \times_{2} \boldsymbol{U}_{l,2} \times_{3} \boldsymbol{U}_{l,3} \|_{F}^{2} + \| \mathbf{w}_{l} \circ \boldsymbol{\mathcal{G}}_{l} \|_{1} \right)$$

Updating Low-rank Tensors

Updating the Whole Image

Problem:

$$\begin{aligned} \min_{\boldsymbol{\mathcal{F}}} \ \frac{1}{2} \| \boldsymbol{Y} - \boldsymbol{\Phi}(\boldsymbol{\mathcal{F}}) \|_{F}^{2} + \sum_{l=1}^{L} \tau \| \mathbf{R}_{l}(\boldsymbol{\mathcal{F}}) - \boldsymbol{\mathcal{G}}_{l} \times_{1} \boldsymbol{U}_{l,1} \times_{2} \boldsymbol{U}_{l,2} \times_{3} \boldsymbol{U}_{l,3} \|_{F}^{2} \\
\end{aligned}$$
Solution:

$$\begin{aligned} \boldsymbol{\mathcal{F}} = \left(\boldsymbol{\Phi}^{T} \boldsymbol{\Phi} + 2\tau \sum_{l} \mathbf{R}_{l}^{T} \mathbf{R}_{l} \right)^{-1} \left(\boldsymbol{\Phi}^{T}(\boldsymbol{Y}) + 2\tau \sum_{l=1}^{L} \mathbf{R}_{l}^{T}(\boldsymbol{\mathcal{G}}_{l} \times_{1} \boldsymbol{U}_{l,1} \times_{2} \boldsymbol{U}_{l,2} \times_{3} \boldsymbol{U}_{l,3}) \right)
\end{aligned}$$

Experiments

Performance on CASSI

Indexes	TV	AMP	3DSR	NSR	LRMA	AE	ISTA	HSCNN	HRecNet	SPR	Ours
PSNR	23.16	23.18	23.636	26.13	25.94	25.72	20.60	25.09	22.83	24.48	28.05
SSIM	0.7130	0.6600	0.7311	0.7610	0.7930	0.7720	0.5499	0.7334	0.6648	0.7395	0.8302
ERGAS	258.32	256.76	245.15	189.19	195.63	197.32	344.57	206.97	268.65	224.19	153.06
RMSE	0.0469	0.0474	0.0457	0.0333	0.0315	0.0333	0.0653	0.0373	0.0496	0.0451	0.0236

Experiments

Performance on DCCHI

Indexes	TV	AMP	3DSR	ANSR	LRMA	Ours
PSNR	23.16	23.18	23.636	26.13	25.94	28.46
SSIM	0.7130	0.6600	0.7311	0.7610	0.7930	0.8277
ERGAS	258.32	256.76	245.153	189.19	195.63	147.84
RMSE	0.0469	0.0474	0.0457	0.0333	0.0315	0.0240

Reference

[1] Wagadarikar A, et al. Spectral image estimation for coded aperture snapshot spectral imagers. Image Reconstruction from Incomplete Data V. International Society for Optics and Photonics, 2008, 7076: 707602.

[2] Jin Tan, et al. Compressive hyperspectral imaging via approximate message passing. IEEE Journal of Selected Topics in Signal Processing, 2015, 10(2): 389-401.

[3] Xin Lin, et al. Spatial-spectral encoded compressive hyperspectral imaging. ACM Transactions on Graphics, 2014, 33(6): 1-11.

[4] Lizhi Wang, et al. Adaptive nonlocal sparse representation for dual-camera compressive hyperspectral imaging. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 39(10): 2104-2111.

[5] Ying Fu, et al. Exploiting spectral-spatial correlation for coded hyperspectral image restoration. IEEE Conference on Computer Vision and Pattern Recognition. 2016: 3727-3736.

[6] Zhiwei Xiong, et al. Hscnn: Cnn-based hyperspectral image recovery from spectrally undersampled projections. IEEE International Conference on Computer Vision Workshops. 2017: 518-525.

[7] Choi I, et al. High-quality hyperspectral reconstruction using a spectral prior. ACM Transactions on Graphics, 2017, 36(6):218.

[8] Lizhi Wang, et al. Hyperreconnet: Joint coded aperture optimization and image reconstruction for compressive hyperspectral imaging. IEEE Transactions on Image Processing, 2018, 28(5): 2257-2270.

[9] Jian Zhang, Ghanem B. ISTA-Net: Interpretable optimization-inspired deep network for image compressive sensing. IEEE Conference on Computer Vision and Pattern Recognition. 2018: 1828-1837.

[10] Lizhi Wang, et al. Hyperspectral image reconstruction using a deep spatial-spectral prior. IEEE Conference on Computer Vision and Pattern Recognition. 2019: 8032-8041.

Thanks for your attention!