Color Texture Description Based on Holistic and Hierarchical Order-Encoding Patterns

Tiecheng Song, Jie Feng, Yuanlin Wang and Chenqiang Gao

Chongqing University of Posts and Telecommunications, China

Email: {songtc, gaocq}@cqupt.edu.cn; {fengjie_cqupt, wwangyuanlin}@foxmail.com

Motivations

- Most of LBP-based methods were designed for gray. However, color spaces (e.g., RGB or HSV) were shown to be closer to human perception and can be effectively incorporated to describe images.
- Ranks (or orders) of values can effectively describe texture structure or color information.
- Distinguish more distinct intensity patterns (e.g., [1 2 3 4] and [10 20 30 40]) in a color image rather than our recent work SWOBP.

Proposed color descriptor

Holistic color-order encoding

• A central pixel in an three-channel image:

$$\boldsymbol{g}_c = [g_c^1, g_c^2, g_c^3] \tag{6}$$

• Sort these intensity values and record their color order information:

$$\boldsymbol{g}_{c_{order}} = [g_{c_{I}}^{1}, g_{c_{I}}^{2}, g_{c_{I}}^{3}] = sort(\boldsymbol{g}_{c})$$
(7)

• Holistic order-encoding pattern for each central pixel is defined as:

$$H2OEP - T = f(\boldsymbol{g}_{c_{order}}) \tag{8}$$

Number	${m g}_{c_{order}}$	Tendency	Attribute	$f(\boldsymbol{g}_{c_{order}})$
1	[1, 2, 3]	$\overline{}$	monotone	1
2	[3, 2, 1]	Z	monotone	1
3	[1, 3, 2]	\searrow	convex	2
4	[2, 3, 1]	\sim	convex	2
5	[2, 1, 3]	\searrow	concave	3
6	[3, 1, 2]	\searrow	concave	3

Fig. 3: Illumination of the holistic color-order encoding

Hierarchical color-order encoding

• Given the color order:

$$\boldsymbol{g}_{c_{order}} = [g_{c_{I}}^{1}, g_{c_{I}}^{2}, g_{c_{I}}^{3}]$$

• Use min ordering, median ordering and max ordering to rearrange color channels.

$$g_{c,i} = \begin{cases} g_c^1, \text{ if } g_{c_I}^1 == i \\ g_c^2, \text{ if } g_{c_I}^2 == i \\ g_c^3, \text{ if } g_{c_I}^3 == i \end{cases}$$
(9)

where i = 1, 2, 3 indicates the index of rearranged color channels after min ordering, median ordering and max ordering. Similarly, we can rearrange all neighboring points and denote them as $g_{p,i}$

• The hierarchical order-encoding pattern for each central pixel is defined as:

$$H2OEP - N_i = \sum_{p=0}^{P-1} s \left(g_{p,i} - g_{c,i} \right) 2^p \tag{10}$$

Joint histogram representation

• Define the central pixel encoding operator for image *I* as follows:

$$H2OEP - C_i = s \left(g_{c,i} - \bar{g}_{c,i} \right)$$
(11)

where $\overline{g}_{c,i}$ is the average value of all $g_{c,i}$ in the *i*-th rearranged color channel for image *I*, and "C" means central pixels.

• Build a 3D joint histogram like CLBP and transform it into a 1D vector denoted as:

$$H_{H2OEP-TCN_i}$$

• concatenate all the generated histograms:

$$H_{H2OEP} = \begin{bmatrix} H_{H2OEP-TCN_1}, H_{H2OEP-TCN_2}, \\ H_{H2OEP-TCN_3} \end{bmatrix}$$
(12)

Experiments

- •Texture datasets
 - KTH-TIPS: 10 classes, illumination & scale changes
 - KTH-TIPS2-b: 11 classes, illuminations, rotations, poses & scales changes
 - STex: 476 classes, 7616 color images in total
 - Outex (TC31): 68 classes, resolutions (dpi) changes
- Nearest-neighborhood (NN) classifier with the chisquare distance:

$$\chi^2(H_1, H_2) = \sum_k \frac{[H_1(k) - H_2(k)]^2}{H_1(k) + H_2(k)}$$

Classification results

TABLE I: C	assification accuracy i	n percent (mean±s	tandard deviation	n) on four color text	ture databases
Method	KTH-TIPS	KTH-TIPS2-b	STex	Outex-TC-00031	Dimension
LBP	94.44±0.63	$55.82{\pm}1.84$	82.02 ± 0.58	88.46	1665
CLBP	94.71±1.93	56.97 ± 0.84	87.65 ± 0.56	84.12	4056
SLGP	94.04±1.56	$53.56 {\pm} 4.54$	$78.81 {\pm} 0.64$	76.76	504
mGIST	96.20±1.05	53.15 ± 1.77	$60.28 {\pm} 0.54$	79.60	1536
mSIFT	92.10±1.36	55.52 ± 2.90	$35.85 {\pm} 0.35$	44.78	3000
Full rankin	g 93.52±0.84	$51.00{\pm}2.81$	$64.90 {\pm} 0.32$	81.47	720
maLBP	93.17±1.22	$54.36 {\pm} 5.56$	$86.17 {\pm} 0.60$	82.86	1024
mdLBP	95.12±1.11	$58.31 {\pm} 6.04$	$90.08 {\pm} 0.45$	86.39	2048
LBPC	92.92 ± 1.24	50.74 ± 2.40	$75.54{\pm}0.57$	84.40	256
SWOBP	95.98±0.99	64.17 ± 2.91	$89.53 {\pm} 0.43$	93.20	2226
H2OEP	97.34 ±0.79	64.18 ±2.82	92.06 ±0.33	92.79	1062

THANKS!