
z

Porting a Convolutional 
Neural Network to 

Hardware

D. -Od. G. Sotiropoulos, Dr. M.Sc, G. - P. K. Economou,

Computer Engineering and Informatics Department, 

University of Patras, Greece

International 

Conference for 

Pattern

Recognition

2020



z

Stereoscopic Vision

▪ In Humans

▪ The distance between the eyes is constant and known.

▪ The eyes can focus on a single point in the scene.

▪ The point of focus is where the imaginary lines from the eyes to the 

scene intersect. 

Humans unconciously focus the intersection on a surface.

▪ The angle of the eyes is known.

▪ Calculation of the distance between the eyes is possible through 

trigonometry.



z

Stereoscopic Vision

▪ In Machines

▪ The distance between the cameras is constant and known.

▪ Focusing on a point in the scene requires complex recursive 

processing that is directly correlated to the distance of the point.

▪ Instead: The cameras are aimed in parallel to the scene.

▪ Approximation of the distance is possible through pixel disparity

Disparity: The distance in pixels along the epipolar line between a pixel from the left image to 

a pixel from the right image that both illustrate the same point of the scene



z

Stereoscopic Vision



z

Artificial Neural Networks (ANNs)

▪ Most often used to classify 

data into classes.

▪ Fine tuned through training to 

produce expected result.

▪ Can extract abstract patterns 

of input.



z

Artificial Neural Networks (ANNs)

▪ Neurons are ordered 

in layers

▪ Each Neuron is fed 

as input ALL of the 

output of the Neurons 

of the previous layer

▪ A neuron is "activated" 

if it's value reaches a 

certain "theshold" to 

pass its output to the 

next layer.



z

Artificial Neural Networks (ANNs)

▪ A sum of products

▪ Each input is multiplied by 

a corresponding "weight", a native 

parameter of the neuron for that 

particular input.

▪ k-th Neuron 

Function: (wk0x0+wk1x1+...+wknxn+bk)

▪ xi : Input i of neuron

▪ wki : Weight i of neuron k

▪ bk : Bias of neuron k

Artificial Neuron Process



z

Convolutional Neural Networks

▪ A type of ANN that 

processes images 

(matrices) instead 

of scalars.

▪ Performs 

convolution instead 

of simple weight 

multiplication.

▪ Computationally 

expensive



z

Convolution

▪ A sum of products

▪ Convolutional filter applied on all 

possible positions of a larger input 

image.

▪ Each input pixel of the input image 

is multiplied by the 

corresponding parameter of the 

applied filter. The intermediate 

products are summed to produce the 

resulting output pixel.

▪ Result: a pixel corresponding to the 

location of input image where the 

center pixel of the filter is applied to.



z

Convolutional Neuron vs 
Classic Artificial Neuron

▪ Convolutional Neuron

▪ Convolutional Neuron 

Function:

(Wk0∗X0+Wk1∗X1+...+Wkn∗Xn+

bk)

▪ ∗: Shifting Dot Product (aka 

Convolution)

▪ Xi: i-th input image (matrix)

▪ Wki: i-th weight array of neuron 

k(aka convolutional filter)

▪ b: bias of neuron k (scalar)

▪ Classic Artificial Neuron

▪ Artificial Neuron Function:

(wk0x0+wk1x1+...+wknxn+bk)

▪ Inputs xi are scalars.

▪ Weights wi are scalars.

▪ Bias b is a scalar.

The convolutional neuron's function can 

be described as a sum of sums 

of products.



z

Content CNN Model
Achitecture

▪ Siamese Architecture: 2 

identical CNN paths

▪ Cross Correlation: Sliding dot

product layer.

▪ Disparity Map Extraction

▪ Smoothing

Original paper: W. Luo, A. Schwing, and R. Urtasun,

“Efficient deep learning for stereo matching,” 2016.



z

Content CNN Specifications: CNN Part

▪ 2 Input Images of size

1242x375px (grayscale)

▪ 9 Fully Connected Layers

▪ Convolutional Sub-Layer

▪ 64 Neurons

▪ 3x3 Convolutional Filters

▪ Batch Normalization Layer

▪ Rectified Linear Unit Layer



z

Spatial Batch Normalization

▪ y: normalized output

▪ x: input

▪ mean(x): minibatch mean

value

▪ std(x): minibatch standard

deviation value

▪ γ: gamma trainable parameter

▪ β: beta trainable parameter

Fast normalization tecnhnique

utilizing statistical parameters

(mean(x), std(x)) extracted from

the training set.

S. Ioffe and C. Szegedy, “Batch normalization: 

Accelerating deep

network training by reducing internal covariate

shift,” 2015.



z

Rectified Linear Unit



z

Cross Correlation

Calculates the dot 

product of the 

CNN output 

tensors over the 

depth dimension 
for D shifts of one 

tensor over the 

other where D is 

the maximum 

disparity value.



z

Disparity Map Extraction

▪ Disparity Volume

▪ The resulting tensor from 

cross correlation is a 3d 

reconstruction of the scene.

▪ Pixel values depict the 

propability that material is 

present in the corresponding 

3d quordinates.

▪ Extracting a disparity map

▪ Essentially moving 3d space 

into 2d by assigning the 3rd 

dimension as color (pixel 

value).

▪ Assign the corresponding 

pixel of the disparity map the 

index of the pixel with 

the maximum value of the 

corresponding depth vector.



z

Demonstration of Content-CNN 
Execution

Original Input



z

Demonstration of Content-CNN 
Execution

Raw Content-CNN Output



z

Demonstration of Content-CNN 
Execution

NYU and SGBM Smoothing



z

Demonstration of Content-CNN 
Execution

Original Paper Complex Smoothing



z

Our matLab Reconstruction Results

Input and output of our

serial matLab

reconstruction of Content-

CNN



z

Convolutional Kernel

▪ Serial Implementation

▪ Performs multiplication of a 

pixel by a parameter.

▪ Adds the product to the 

accumulating result.

▪ Stores the accumulating

result in a buffer

(Accumulator)



z

Double Parallelization Strategy

▪ Parallelization of Layer

Output: Depth Vector Output

▪ Serial processing of 

convolution (convolutional

kernel)

▪ Serial processing of neuron

output (pixel by pixel

processing)

▪ Parallelization of 

Neigbouring Pixels: Height

Vector Output

▪ Multiple systems of depth

vector processing



z

Double Parallelization Strategy



z

Double Parallelization Strategy



z

Kernel Grid

▪ Depth Vector:

▪ Common pixel inputs

▪ Individual parameters

(each kernel performs the 

function of a different

neuron)

▪ Row of 64 Kernels

▪ Height Vector:

▪ Different pixel inputs (each

kernels processes differen

t pixels of 

the same neuron output)

▪ Common parameters

▪ Column of k Kernels

How to organize a set of kernels in order to realize the parallelization strategies



z

Kernel Grid

▪ Rows of 64 Kernels

▪ Columns of 6 Kernels



z

Normalization & Cross-correlation 
Kernel Support

▪ Batch Normalization:

▪ Mean(x), std(x), γ, β constant 

during execution.

▪ The function can be reduced 

to a first degree polynomial

A sum 

of products 

processable 

by the kernel

▪ Cross Correlation

▪ A sum of products, also 

processable by the kernel 



z

ReLU & Disparity Map Extraction in 
Hardware

▪ ReLU

▪ Can be easily implemented 

with multiplexers.

▪ Disparity Map Extraction

▪ Simple specialized circuit



z

I/O Management

▪ Input Pixel Buffer System

▪ Input Parameter Buffer 

System

▪ Output Results Buffer System



z

Results Buffer

▪ Parallel Load

▪ Serial Store to memory

▪ Exploits long processing 

cycle to fully nest the memory 

store cycle into the 

processing cycle.



z

Parameter Buffer System

▪ Cyclic Shift Buffer System

▪ All neuron specific 

parameters loaded in the 

buffer

▪ Feedback of used 

parameters to the tail of the 

buffer to be used in next 

processing cycle

▪ Auxiliary buffer



z

Horizontal and Vertical Overlap of 
Convolution by a 3x3 Filter

▪ Horizontal Overlap

▪ Input pixel columns 

corresponding to the 2nd 

and 3rd columns of the 

applied filter constitute the 

1st and 2nd input pixel 

columns of the convolution 

of horizontal to the right 

neigbouring output pixel

▪ Vertical Overlap

▪ Input pixel rows 

corresponding to the 2nd 

and 3rd rows of the applied 

filter constitute the 1st and 

2d input pixel rows of the 

convolution of vertical to 

below neigbouring output 

pixel



z

Horizontal and Vertical Overlap 
of Convolution by a 3x3 Filter

▪ Horizontal overlap exploitation

▪ Cyclic buffer:

▪ Pixels in the head that will not

be used in the future are 

ejected from the buffer while 

new input pixels are read from 

memory and store to the tail

▪ Pixels in the head that will be 

used in the future are fed 

back to the tail of the buffer

▪ Vertical overlap exploitation

▪ Line buffer:

▪ Each buffer holds pixels from 

a single input image row

▪ Smart feed of pixels from a 

line buffer to multiple kernel 

units (kernel grid rows)



z

Pixel Buffer 
Behaviour over 3 

phases of 
convolution cycle



z

Pixel Buffer 
Behaviour over 3 

phases of 
convolution cycle



z

Pixel Buffer 
Behaviour over 3 

phases of 
convolution cycle



z

Conclusion

▪ Total of

▪ Fit in

for a single kernel unit

▪ For 6 kernel units

▪ Real time execution with a 

clock of 800MHz


