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Background

* Adversarial Examples:
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“panda” “nematode” “gibbon”
57.7% confidence 8.2% confidence 99.3 % confidence

Perturbations are small, imperceptible to human.

Goodfellow et al. 2014



http://arxiv.org/abs/1412.6572

Adversarial Training

* Improve robustness of DNNs against adversarial examples

AT:

‘C'AT (:BI: Yt Tadv 9) =D [h’{yi |:EI:|.- p{y|$i + Tadv, 9)]
with 7.4, = arg maxD [k (y|x;), p (y|z; + 7,0)],
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[Goodfellow et al. 2014]

VAT:

Lyar (@, Tav, 0)=D [p(y|z+., 0), p(y|T+ +Tadv, 0]
with 7,4, = argmaxD [p(y|z., @), p(y|z. + r,0)],

rilrll2<e

[Miyato et al. 2018]



Multiplicative Perturbations

* We propose a new type of adversarial perturbations:

Tadv = T+ Tadu ‘ Tradv = T O 2

e Derive new loss functions:
xXAT: xVAT:

Liar(T, Zxadv, 0) = D [h(y|z,0), p(y|T © Zxady, 0)] ﬁKVAT($: Zxadv 9) =D [p('y‘ilfg 6) p(ylm © Zxadv, 9)]

with zy,gy = arg maxD [h(y|z.0).p(y|z © 2, 0)] with zg,gy = arg maxD [p(y|x, 0), p(y|x © z,0)]
z =



* We use the Ly-norm of z to regularize the learning:

Zyadv = argmax AD(z,x,0) + A z][o
=

P
= argmax AD(z,x,0) + A Z 123 £0)

* However, the discrete essence of z makes it undifferentiable.



Optimization '

« We adopt the Stochastic Variational Optimization and the Hard
Concrete Gradient Estimator techniques for optimization.

log Quxagy =arg maxiE,,z4(0,1) [&D(g(f(log a,u)),x, 9)]
log

P
+)~.Za(10guj — Blog 2;) (12)
j=1 -

with
floga,u)=0c ((logu — log(1—u)+loga)/B) (C—v)+7,
g(-) = min(1, max(0,-)),

* Generate the mask: 2 e = 9(F (108 Cteaqy, ), w ~ U(0.1).


https://arxiv.org/abs/1809.04855
http://arxiv.org/abs/1712.01312

Transductive vs. Inductive Training

parameter: loga

|_'
) .
a4 -
sampler h -?'_O_’ ] r---' Classifier
loga g ot I i j - @
Generator v
Oy

Fig. 2. The pipeline of the transductive and inductive implementations of multiplicative adversarial training.




Shrink or Expand
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Fig. 3. The effect of ¢ on different perturbations. (a) shows that the additive
perturbations are on the surface of a ball with the radius e. (b) demonstrates
that our multiplicative perturbations are distributed within the rectangle.



Efficient Computing

« Both AT and VAT resort to optimizing additive perturbations and
classifier parameter alternatively in two steps.

(a) Additive Perturbation Pipeline

« XAT/XVAT can update them simultaneously in one step.
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Experiments: Semi-supervised learning

TEST ACCURACIES OF SEMI-SUPERVISED LEARNING ON MNIST, SVHN
AND CIFAR-10. THE RESULTS ARE AVERAGED OVER 35 RUNS.

Test Accuracy (%)
Method MNIST SVHN CIFAR-10
N;=100 N;=1000 N;=4000

GAN with feature match [22] 99.07 91.89 81.37

CatGAN [23] 98.09 - 80.42
Ladder Networks [24] 98.94 - 79.60
II-model [14] - 04.57 83.45
Mean Teacher [16] - 94.79 82.26
VAT [6] 098.64 9423 85.18
xVAT (Transductive) 98.02  93.99 85.82

xVAT (Inductive) 97.82 9422 86.59




Experiments: Supervised learning

TEST ACCURACIES OF SUPERVISED LEARNING ON CIFAR-10 AND
CIFAR-100. THE RESULTS ARE AVERAGED OVER 5 RUNS.

Test Accuracy (%)

Method CIFAR-10  CIFAR-100
Baseline (MLE) [14] 03.24 73.58
II-model [14] 94.44 73.68
Temporal ensembling [14] 94.40 73.70
AT, L~ (ours)* 03.90 74.04
VAT [6] 04.19 75.02
XAT (Inductive) 93.70 74.62

xVAT (Inductive) 03.88 75.30




Experiments: Speed

THE TRAINING SPEEDS OF VAT AND XVAT ON THE FOUR BENCHMARK
DATASETS. THE RESULTS ARE AVERAGED OVER 3 RUNS.

Seconds per epoch
Method
o MNIST SVHN CIFAR-10 CIFAR-100
VAT (ours)* 431 543 513 51.5
XVAT (Transductive) 4.54 36.6 34.1 393

xVAT (Inductive) 4.33 35.7 33.6 344




Multiplicative vs. Additive Perturbations
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* The multiplicative perturbations are

(1) More perceptible
(2) More interpretable
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Robustnhess and Sparsit

Histograms of weights shows that xVAT learns a denser classifier from
multiplicative perturbations with more non-zero weights than VAT and
MLE, which may indicate the adversarially trained DNNs need more
capacities (active neurons) to against multiplicative perturbations.
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Fig. 6. Histograms of the classifier weights learned by MLE, VAT and xVAT on CIFAR-100. The histograms are computed from different CNN layers.



Thank you!



