

### GCNs-Based Context-Aware Short Text Similarity Model

Xiaoqi Sun<sup>†</sup>, Shaochun Wu<sup>\*</sup>, Yue Liu<sup>‡</sup> \*<sup>†</sup>School of Computer Engineering and Science, Shanghai University <sup>‡</sup>School of Computer Engineering and Science, Shanghai University, Shanghai Institute for Advanced Communication and Data Science, Shanghai Engineering Research Center of Intelligent Computing System, Shanghai, 200444, China Email: {xiaoqisun, scwu, yueliu}@shu.edu.cn

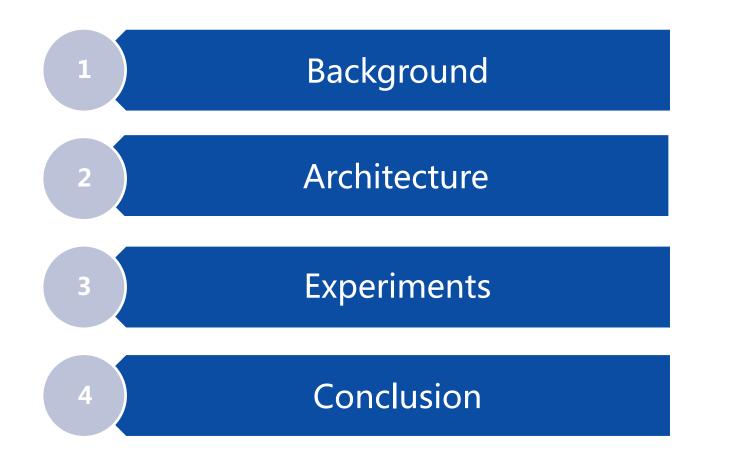
Xiaoqi Sun

Shanghai University



# Contents





### Introduction



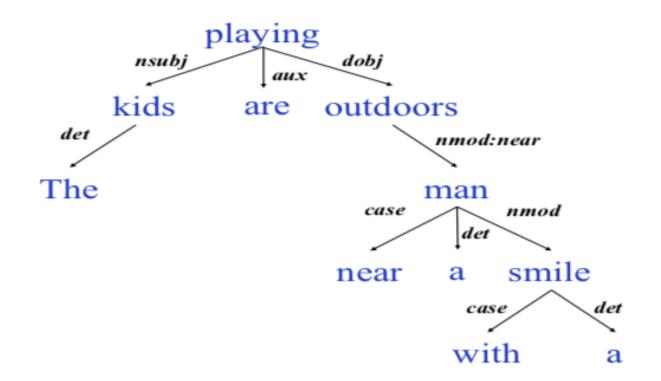


Fig. 1: The dependency tree of the sample sentence: The kids are playing outdoors near a man with a smile.

## Architecture



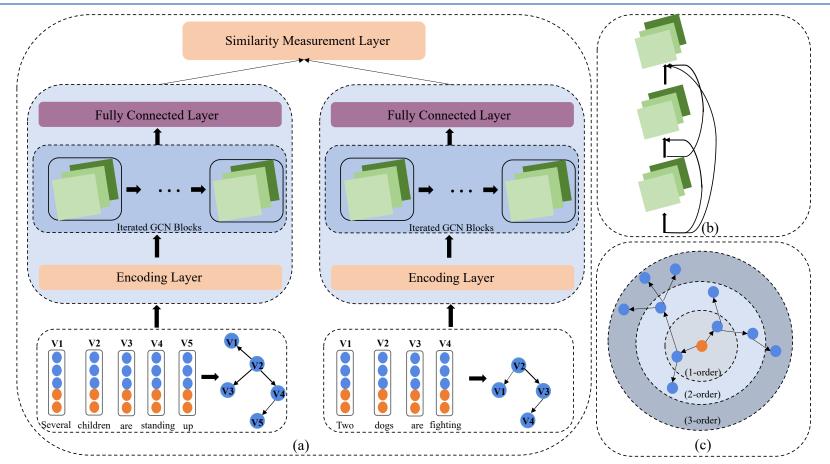


Fig. 2: (a): The overall architecture of GCSTS with an example sentence pair and the dependency trees. GCSTS includes encoding layer, iterated GCN block, fully connected layer and similarity layer. (b): The iterated GCN blocks with dense connections. (c): An example node and its 1-order, 2-order, and 3-order neighbors.

### Experiments



#### Comparison with State-of-the-Arts

| Model                                            | STS12 | STS13 | STS14 | STS15 | STS16 | STS-B | Avg.  |
|--------------------------------------------------|-------|-------|-------|-------|-------|-------|-------|
| Avg. GloVe embeddings (Pennington et al., 2014)) | 0.547 | 0.711 | 0.585 | 0.653 | 0.630 | 0.575 | 0.617 |
| Multi-Perspective-CNN (He et al., 2015)          | 0.571 | 0.725 | 0.627 | 0.702 | 0.666 | 0.594 | 0.647 |
| Dependency Tree-LSTM (Tai et al., 2015)          | 0.583 | 0.759 | 0.649 | 0.731 | 0.685 | 0.616 | 0.671 |
| Constituent Tree-LSTM (Tai et al., 2015)         | 0.577 | 0.746 | 0.645 | 0.727 | 0.673 | 0.607 | 0.663 |
| Siamese LSTM (Mueller et al., 2016)              | 0.580 | 0.758 | 0.644 | 0.724 | 0.689 | 0.610 | 0.668 |
| InferSent (Conneau et al., 2017)                 | 0.599 | 0.763 | 0.650 | 0.748 | 0.694 | 0.625 | 0.679 |
| Avg. BERT embeddings (Devlin et al., 2019)       | 0.520 | 0.693 | 0.584 | 0.650 | 0.615 | 0.562 | 0.604 |
| Text-GNN (Huang et al., 2019)                    | 0.603 | 0.771 | 0.656 | 0.736 | 0.710 | 0.624 | 0.683 |
| GCSTS                                            | 0.615 | 0.782 | 0.669 | 0.742 | 0.715 | 0.637 | 0.693 |

TABLE I: STS12-STS16: SemEval 2012-2016 datasets. STS-B: STSbenchmark dataset. We report the Spearman correlation coefficient in this work. The best results are bold.

### Experiments



#### Comparison with State-of-the-Arts

| Model                                            | Accuracy | F1    |
|--------------------------------------------------|----------|-------|
| Avg. GloVe embeddings (Pennington et al., 2014)) | 0.721    | 0.749 |
| Multi-Perspective-CNN (He et al., 2015)          | 0.752    | 0.817 |
| Dependency Tree-LSTM (Tai et al., 2015)          | 0.769    | 0.824 |
| Constituent Tree-LSTM (Tai et al., 2015)         | 0.760    | 0.803 |
| Siamese LSTM (Mueller et al., 2016)              | 0.767    | 0.820 |
| InferSent (Conneau et al., 2017)                 | 0.762    | 0.831 |
| Avg. BERT embeddings (Devlin et al., 2019)       | 0.718    | 0.737 |
| Text-GNN (Huang et al., 2019)                    | 0.776    | 0.835 |
| GCSTS                                            | 0.785    | 0.854 |

TABLE II: Experimental results on the MRPC dataset. The best results are bold.

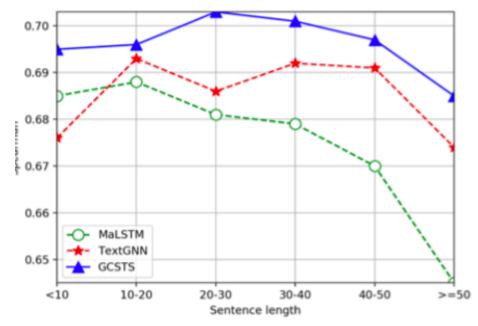


Fig. 3: Comparison of GCSTS, MaLSTM, and Text-GNN against different sentence lengths.

### Experiments

### Ablation Studies

| GCSTS                         | <b>STS15</b> ( <i>p</i> ) | MRPC(Acc.) |
|-------------------------------|---------------------------|------------|
| (1)- Iterated GCN blocks      | 0.723                     | 0.765      |
| (2)- Dynamic graph structures | 0.730                     | 0.769      |
| (3)- BiLSTM encoding layer    | 0.720                     | 0.774      |
| (4)- POS embedding            | 0.742                     | 0.784      |

TABLE III: An ablation study for the proposed model. •

- In (1), removing iterated GCN blocks means we use one block (2-layer GCN).
- In (2), we use a fixed graph structure in each layer of the GCN block.
- In (3), we remove the encoding layer from our model.
- In (4), we remove the part-of-speech embeddings.



### Conclusion



#### Context Aware Hierarchical Feature Attention Network

A novel GCSTS that apply iterated GCN blocks with dynamic graph structures, which learns better sentence representations in short text similarity. Com- bined with dense connections, GCSTS is able to capture local and non-local interactions of texts.

> A new way to train deeper GCNs successfully.

Extensive experiments on the on seven challenging semantic textual similarity datasets that include different domains demonstrate that proposed model can learn better text representations.



### Thanks for listening !



Xiaoqi Sun

Shanghai University