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Multi-View Learning (MVL)

- Multi-view learning : an instance is described by @ different vectors.

- The task is to learn :
hexMxx@ x.oxx@ 5y

- A mutli-view training set T' is composed of @ training replicates noted :

T = {(ng),yl),(xg’),yz) x5, yn } Vg=1.Q



Multi-View Learning (MVL) \ﬁ) l]tIS

- Multi-view learning : an instance is described by @ different vectors.

- The task is to learn :
hexMxx@ x.oxx@ 5y

- A mutli-view training set T' is composed of @ training replicates noted :

T(q) = {(xgq)’yl)v(xéq)va)a" n 7yn } Vq—l Q

Medical Im:ges

Shape and Size-based Textural Features
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-+ One or several modalities of medical
images (CT, MR, ...)

Histogram-based /
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Clinical Data ~ Genomics Data

- Several families of features (Textures,
Shapes/volumes,...)

- Combine with clinical and/or genomic data
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State of the art in Multi-view Learning

their agreement [10]

- For example, the most popular approach,
Co-training methods [10]

- Problems : Require additional (unlabeled)
data for adjusting the models

- This is often impossible for real-world
problems for which data are particularly
difficult to collect (e.g. medical field)
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Usually consists in learning separate models on each view and in ajusting them by maximing
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The Random Forest Dissimilarity (RFD) framework [2] Qlitis
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QRrF QRFD Merging Final RED Final
classifiers matrices aperator ‘matrix classifier

QViews

1. Train a Random Forest classifier H(4) on each 7(9)

2. From these RF, compute @ n x n dissimilarity matrices D;‘}), such that each cell is a
dissimilarity measure d(x;,x;) (more details after)

3. Merge the Q dissimilarity matrices to form a final RFD matrix D g

4. Train a new classifier using Dy as a new training set
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”\ uf =
The Random Forest Dissimilarity (RFD) measure \}l]hs

Random Forests embed a similarity measure on pairs of instances

No .
- Let £, bet the set of leaves in the k" tree of
/ \ the forest
’ Let
[k X = Ek
‘ N3 ‘ Ny ‘ N5 Ng be a function that maps all x to predict with
that tree to the leaf from £ in which it lands

Y X
N7 Ng Ny Nio
. 0 Here, [k(xi) = N12
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™\ uff =
The Random Forest Dissimilarity (RFD) measure \)l]hs

Random Forests embed a similarity measure on pairs of instances

- The similarity d(k>(Xi7Xj) between x; and x;,
given by the k" tree, is

0 otherwise

X
SR @
.
Y\ - Here, x; and x; don't land in the same leaf :

glajos
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™\ uff =
The Random Forest Dissimilarity (RFD) measure \)l]hs

Random Forests embed a similarity measure on pairs of instances

ol ol
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- The similarity d(k>(Xi7Xj) between x; and x;,

given by the k" tree, is

0 otherwise

- Here, x; and x; land in the same leaf:

d(k>(xi7 xj) =1
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™\ uff =
The Random Forest Dissimilarity (RFD) measure \)l]hs

Random Forests embed a similarity measure on pairs of instances
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Motivation and contributions \’Jlltls

The Random Forest Similarity measure pros and cons

Pros:

- Good theoretical properties ([3, 8])
- Non-parametric
- Take the class into account for learning the similarities

- No formulation of the metric beforhand (contrary to metric learning methods)

Cons:

- The tree-based measure is overly simplistic (0/1), which could lead to inaccurate
measurement if the forest is composed of too few trees ([6])

= We propose 2 new methods for measuring similarities with RF within the RFD framework
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Proposed method 1: RFD with Node Confidence (REFDy¢) @litis

All the leaves of a tree are not equally reliable for estimating similarities
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According to the RF similarity measure :

- the 'red’ instance in node #2 is similar to all the 'blue’ instances in the same area

- the 'red’ instance in node #8 is similar only to the 'yellow’ instance in the same node
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Proposed method 1: RFD with Node Confidence (RFDy¢) \)l]hs

All the leaves of a tree are not equally reliable for estimating similarities

- Solution : Weight the RFD measure with a node confidence estimate
- Use Out-of-Bag instances ([1]) of each tree for computing these weights
- For a given instance x, its weight is given by :

wp(xe) = 3T I(hp(xi) = )

‘lP(xt)I XiElp(Xt)

where |l (x¢)| is the number of training instances, including the OOB, that have landed in
the same terminal node as x;.
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Proposed method 1: RFD with Node Confidence (REFDy¢) @litis

An instance shouldn’t have the same similarity to all the training instances of the node in
which it is located
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According to the RF similarity measure :

- the 'red’ instance in node #2 have the same similarity to all the 'blue’ instances in the
same node
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Proposed method 2 : RFD with Instance Hardness (RFDjy) \)l]hs

An instance shouldn’t have the same similarity to all the training instances of the node in
which it is located

- Solution : Weight the RFD measures with an instance hardness estimate ([9])

- Use the k-Disagreeing Neighbors (kDN) measure :

Ix; : x; € ENN(x:) Ny; # il

kDN (x;) = p

where kNN (x;) stands for the k nearest neighbors of x;

- The dissimilarity between any x and the training instance x; is :

EDN(x;), if lp(x) = lp(xi)
1, otherwise

dp(x,%;) = {
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Experimental validation

- 15 real-world multi-view datasets (medical, image and text classification)

- 4 competitors for estimating dissimilarities within the RFD framework :

- Euclidean distance

- the LMNN metric learning method ([5])

- the original RFD method (e.g. in [7])

- the RFD variant proposed in [6] (RFDispp)

- 10 times stratified random split 50% training - 50% test
- 2 statistical tests of significance :

- Nemenyi post-hoc test with Critical Differences (CD) ([4])
- Pairwise analysis based on the Sign test, from the number of wins, ties and losses
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Results

Average precision (with standard deviation) and mean rank
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EUD:is LMNN Dis RF Duis RFDispp RFDisnc RFDisrg

AWA8 39.22 +2.55|42.28 £ 3.13 [56.06 £+ 1.35/56.38 £ 1.47| 56.34 £ 1.68 | 56.22 + 1.01
AWA15 24.80 +0.97 | 28.25 £ 1.60 [37.90 £ 1.49| 37.62 + 1.40 | 37.93 £ 1.50 |38.23 + 0.83
Metabo 69.38 + 2.29| 67.08 & 4.04 [67.71 £ 5.12| 67.50 £ 5.76 | 67.08 £ 6.31 | 69.17 £+ 5.80
Mfeat 96.00 + 1.45 | 96.87 £ 0.79 |97.56 £+ 0.99(97.63 + 0.95| 97.63 £ 1.00 | 97.53 &+ 1.00
NUS-WIDE2 | 89.52 £ 1.44 | 90.33 & 1.55 [92.49 &+ 2.01| 92.49 £ 1.81 | 92.67 4 1.47 |92.82 +1.93
BBC 85.89 +1.33|93.02 £ 1.29 [92.82 £ 0.67| 93.00 + 0.67 | 92.33 £ 0.49 [95.46 £+ 0.65
lowGrade |63.72 4+ 5.12|62.33 £ 7.04 |63.48 &+ 3.76| 63.72 + 4.67 |63.95 + 3.64| 63.95 + 5.62
NUS-WIDE3 | 73.92 4 2.40 | 78.02 £ 2.69 [79.41 £ 1.94| 79.64 + 2.19 | 79.91 £ 2.14 [80.32 £ 1.95
progression| 58.42 + 4.82 | 62.63 + 5.86 [63.42 + 6.49| 63.42 + 7.48 | 63.95 4+ 6.56 |65.79 + 4.71
LSVT 82.86 + 2.11 |85.24 + 2.84|83.33 £ 3.97| 82.70 4 3.44 | 83.49 £ 3.56 | 84.29 + 3.51
IDHCodel | 73.53 £ 5.42 | 71.47 + 2.30 [76.47 £ 3.95| 76.47 £ 4.16 | 76.18 4= 3.82 |76.76 + 3.59
nonlDH1 79.07 £ 3.45| 73.26 £ 3.49 [79.53 £ 3.57| 79.53 £ 3.72 | 79.77 £ 3.46 [80.70 £ 3.76
BBCSport | 80.11 +1.69 | 73.77 £ 5.45 [81.75 £ 2.70| 82.56 + 2.85 | 79.93 £ 3.11 {90.18 £+ 1.96
Cal20 84.04 + 0.82 | 87.50 £ 0.78 [89.12 £ 0.69| 89.27 + 1.01 | 89.06 £ 1.19 [89.76 £+ 0.80
Cal7 92.67 + 0.63 | 95.09 & 0.66 |95.21 4 0.67| 95.51 4 0.50 | 95.34 £ 0.48 |96.03 £ 0.53
Avg rank 5.20 4.83 3.67 2.83 2.93 1.53

- RF Disyp is the most accurate method on 10 datasets. Its average rank is 1.53

- The RF-based dissimilarity methods achieve the best results for 14 datasets
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Results O l]hs

Statistical significance

- These results are confirmed by the statistical tests

RFDisPB
” RFDisIH
Q
g i B
Z neo =1.
£ RFDis, Critical Difference=1.9469
] 6 5 4 3 2 1
2
LMNNDis
X EUDis e RFDisIH
=i LMNNDis ———— L RFDisy,
0 5 10 15 RFDis F{FDnsPB

# Datasets
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Conclusion @litis

- RF measures are more accurate and better reflect the dissimilarities between instances
with respect to the classification task, while remaining robust to high dimensions.

- The most efficient method is based on an instance hardness measurement calculated in
the subspaces extracted from the trees of the RF.

- It allows to penalize unreliable dissimilarity estimates given by trees that have failed to
correctly predict the instances.

- Experiments and results on real-world multi-view datasets have shown that this

mechanism is significantly more accurate than the standard RFD measure and than
state-of-the-art metric learning methods.
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