

Watermelon: a Novel Feature Selection Method Based on Bayes Error Rate Estimation and a New Interpretation of Feature Relevance and Redundancy

Xiang Xie and Wilhelm Stork xiang.xie@kit.edu, wilhelm.stork@kit.edu

www.kit.edu

Why feature selection?

Datasets with tens of thousands of features are not uncommon anymore
 e.g. image data, microarray data and text data

Resources & time consuming, sometimes bad performance due to noisy and/or redundant features

- What does feature selection provide:
 - Improve the prediction performance of the predictors
 - Provide faster and more cost-effective predictors
 - Better understanding of the underlying process that generated the data

Proposed method: Watermelon

Score each feature independently
 Approximate Bayes Error Rate (BER)
 Use kernel density estimation

Greedy search of feature subset

Dynamic adjustment of feature scores
 Reward feature relevance
 Depailing feature redundancy

Penalize feature redundancy

Algorithm 1 Watermelon feature selection **Require:** $X \in \mathbb{R}^{n \times d}, Y \in \mathbb{R}^{n}, L, m$ 1: init $S \leftarrow \emptyset$ 2: for k = 1 : d do for $i, j = 1 : L, i \neq j$ do 3: calculate $BER(c_i, c_i | f_k)$ 4: end for 5. calculate score function $Q(f_k)$ 6: 7: end for 8: $f_k^* = \operatorname{argmin} Q(f_k), S \leftarrow S \cup f_k^*$ $f_{k} \in F$ 9: while $|\tilde{S}| < m$ do for all $f_k \in F \setminus S$ do 10: calculate $Q(S; f_k)$ 11: end for 12: $f_k^* = \operatorname{argmin} Q(S; f_k), S \leftarrow S \cup f_k^*$ 13: $f_k \in F \setminus S$ update all score functions 14: 15: end while 16: return S

Estimation of Bayes Error Rate

- Use kernel density estimation (KDE) to approximate the true distribution of the data
 - Because true distribution is unknown in most cases
- Calculate the estimated BER
 - Use one-vs-one or one-vs-all
- Score the features according to the BERs
 Features are individually evaluated
 - → Assumption: features are independent

Dependence: Redundancy? Relevance?

- Measurements for dependence
 - - Linear dependence
 - Spearman's rank correlation coefficient
 - Monotonic dependence
 - (Normalized) mutual information
 - General dependence

Do we need dependence?

- Monotonic dependence
 - → Truly redundant
 - Penalize redundancy
- Non-monotonic dependence
 Might help due to complementarity
 - Reward relevance

More details in paper

Comparative algorithms and datasets

17 comparative algorithms

Category	Method			
	fischer_score [4]			
similarity-based	refiefF [6]			
	trace_ratio [5]			
	11_121 [7]			
sparse-learning-based	ls_121 [7]			
	RFS [8]			
statistical based	f_score [9]			
statistical-based	gini_index [10]			
	CIFE [14] CMIM [17] [18]			
	DISR [19]			
	FCBF [20]			
information-theoretical-based	ICAP [29]			
	JMI [15] [16]			
	MIFS [12]			
	MIM [11]			
	MRMR [13]			

17 datasets

Data Type	Dataset	#instances	#features	#classes	
text data	PCMAC	1943	3289	2	
	COIL20	1440	1024	20	
	ORL	400	1024	40	
face image data	orlraws10P	100	10304	10	
lace image data	warpAR10P	130	2400	10	
	warpPIE10P	210	2420	10	
	Yale	165	1024	15	
handwritten	USPS	9298	256	10	
image data	Gisette	7000	5000	2	
spoken letter recognition data	Isolet	1560	617	26	
biological data	CLL_SUB_111	111	11340	3	
	Colon	62	2000	2	
	GLIOMA	50	4434	4	
	Lung	203	3312	5	
	Lymphoma	96	4026	9	
	nci9	60	9712	9	
	TOX_171	171	5748	4	

Experiment setup

Select first n features n ∈ {10, 25, 50, 75, 100, 125, 150, 175, 200}

Train a linear SVM and a random forest

- 80%/20% train/test split
- 10 different seeds

Fair play: no hyperparameter tuning

Results and comparison

Method	CLL_	COII 20	Colon	GLIOMA	Isolet	Lung	Lymphoma	nciQ	OPI	orlraws 10P	PCMAC	TOX 171	USDS	warn A P 10P	warpDIE10D	Vale	Gisette	Ava Pank
Wiethou	SUB_111		Colon	OLIOMA		Lung	Lymphoma		OKL	onnawstor	TCMAC		0515	waipARIO	warprineror	Tale	Oisette	Avg. Raik
Watermelon	76.4	95.9*	84.9*	78.0*	86.4*	91.9	87.0	76.4*	90.6*	95.8*	89.5	85.3*	92.1*	93.5*	98.9*)	74.9*	93.7*	1.9
DISR	64.6	87.1	83.6	65.2	72.1	89.5	90.3	71.9	79.5	75.1	89.9	73.0	82.2	86.1	96.2	65.7	93.2	6.2
ICAP	63.8	80.0	81.1	63.8	70.1	89.1	91.3*	71.9	83.7	67.8	89.7	83.8	87.0	82.3	96.6	60.8	92.5	7.2
fischer_score	58.6	79.4	79.0	77.6	74.0	88.9	86.3	73.9	81.4	80.2	88.5	79.7	86.6	84.2	97.6	66.2	92.8	7.6
JMI	62.3	79.1	83.5	64.0	69.3	90.5	91.2	70.5	78.6	91.4	89.6	67.8	88.2	84.5	97.5	61.9	92.7	7.41
f_score	58.6	79.4	79.0	77.6	74.0	88.9	86.3	74.6	81.4	80.2	88.5	79.7	86.6	84.2	97.6	66.2	82.3	7.8
trace_ratio	58.6	79.4	79.0	77.6	74.0	88.9	86.3	74.5	81.4	80.2	88.5	79.7	86.5	84.2	97.6	66.3	92.4	7.8
MRMR	55.1	89.4	79.0	68.2	77.3	86.6	91.3	70.6	82.7	72.4	90.5*	62.2	73.3	85.0	98.3	59.3	92.2	8.0
CMIM	63.8	79.9	81.3	63.8	70.0	89.1	(91.3*)	69.9	83.7	67.8	89.7	71.5	87.0	82.3	96.6	60.8	91.9	8.2
MIM	63.9	81.1	78.5	71.6	59.0	87.6	87.3	67.8	60.9	85.3	89.7	74.3	86.9	83.1	94.8	59.3	92.9	9.1
reliefF	62.5	81.0	83.2	71.4	63.2	90.4	80.2	60.1	76.8	77.8	73.4	76.8	88.0	85.8	95.5	55.9	92.8	9.1
gini_index	(79.0*)	85.1	79.7	76.4	60.2	89.9	66.5	39.4	77.9	65.2	89.9	69.2	79.4	72.4	94.8	45.9	92.8	10.3
RFS	74.4	81.4	58.2	32.0	73.0 🔇	92.7*	79.6	34.4	51.4	51.6	86.6	85.1	89.3	68.5	95.4	34.6	91.0	11.2
11_121	58.4	75.7	80.7	68.8	68.6	90.7	82.4	45.2	56.0	49.3	84.5	81.5	83.5	80.5	95.8	42.7	83.4	11.9
ls_l21	42.1	82.7	60.9	48.7	79.5	69.0	47.5	26.0	84.6	61.9	70.7	57.6	90.4	73.8	95.0	59.1	78.3	12.7
MIFS	54.6	55.6	78.5	48.3	64.9	84.1	85.1	46.1	79.1	77.6	86.3	55.7	72.1	63.0	95.6	46.9	84.7	13.8
FCBF	50.9	19.4	83.1	37.0	21.8	81.0	86.7	70.6	9.3	19.5	87.3	22.3	30.8	19.6	26.2	12.1	84.7	15.1
CIFE	41.7	38.7	79.8	48.0	61.4	70.7	63.3	24.3	25.4	63.5	82.0	30.0	32.7	26.2	92.8	20.3	87.6	16.0

Results and comparison

- Significant Dominance Partial Order Diagram
 - e.g.: Watermelon is significantly better than CIFE with 99% confidence
- Why is our method good?
- Compare with two versions
 - Watermelon-B: only use BERs to rank features
 - Watermelon-B-S: use BERs and penalize redundancy only

Classifier	Method	Avg. Acc	Avg. Rank	Overall Rank
	watermelon-B	79.4	7.4	7
SVM	watermelon-B-S	86.3	2.8	1
	watermelon	87.7	1.9	1
random	watermelon-B	82.0	8.8	8
forest	watermelon-B-S	87.3	3.7	1
	watermelon	89.7	2.7	1

99% Confidence

95% Confidence 90% Confidence

MRMR

CMIM

MIM reliefF gini_index

> I1_I21 Is_I21 MIFS FCBF CIFE