

Semantics to Space(S2S): Embedding semantics into spatial space for zero-shot verb-object query inferencing

Sungmin Eum*†

Heesung Kwon*

eum_sungmin@bah.com

heesung.kwon.civ@mail.mil

*U.S. Army Research Laboratory

†Booz Allen Hamilton

Semantics to Space(S2S): Embedding semantics into spatial space for zero-shot verb-object query inferencing

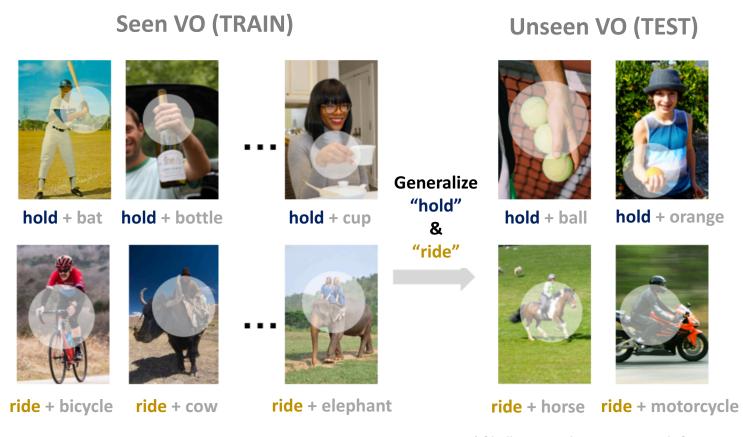
Verb-object query inferencing?

Recognize images by using verb-object expressions, e.g., "ride a horse", "hold ball"

Zero-shot?

Be able to classify/recognize images that fall under "unseen" category

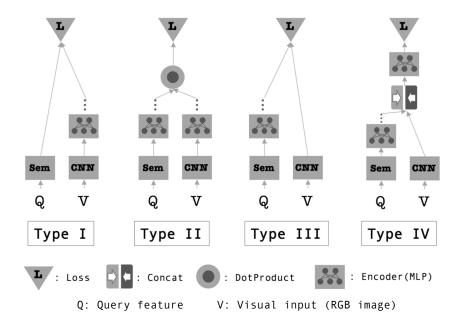
TASK: Zero-shot Verb-Object (VO) Inferencing



 $[\]ensuremath{^*}$ [ball, orange, horse, motorcycle] was never shown in training.

Comparison with previous work:

Previous work



Competition: What is the best joint embedding subspace for co-learning visual features with query/semantic features?

Ours

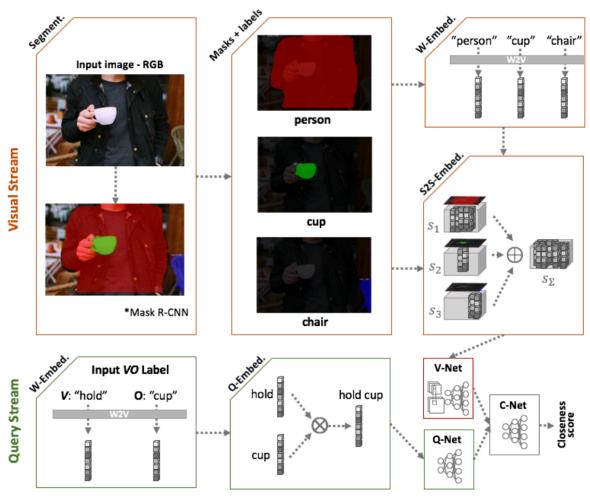
✓ Do NOT compete with previous approaches in searching for the best joint embedding subspace

Q1 "Why are the *semantics* only exploited for constructing query features but *not* for generating visual features when the end goal is to train a module to match the two?"

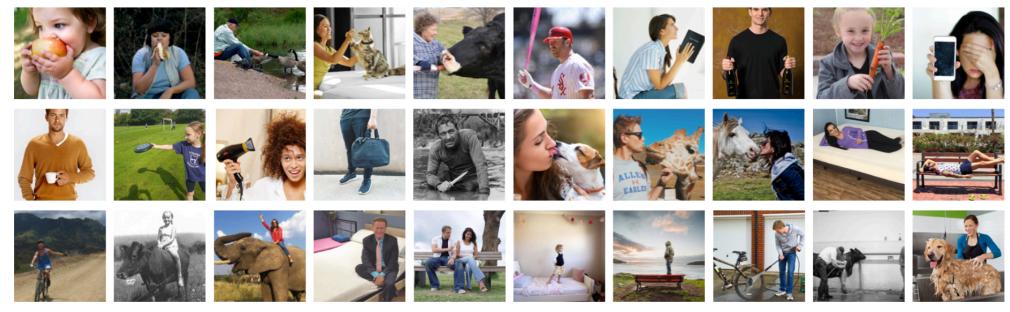
Q2 "Will the semantics be effective if embedded into both the visual and the semantic stream?"

✓ Directly embed the semantics into the spatial space of the visual stream (Contribution)

APPROACH: Semantics-to-Space (S2S)



DATASET: Verb-Transferability 60



Train	Test
apple, banana	broccoli, donut
bird, cat, cow	dog, giraffe, horse, sheep
baseball bat, book, bottle,	orange, scissors, skateboard,
carrot, cell phone, cup,	sports ball, surfboard, tennis racket,
frisbee, hair dryer, handbag, knife	toothbrush, vase, wine glass
dog, giraffe, horse	bird, cat, cow
bed, bench	couch, surfboard
bicycle, cow, elephant	horse, motorcycle, sheep
bed, bench	chair, couch
bed, bench	chair, couch
bicycle, cow, dog	elephant, horse, motorcycle
	apple, banana bird, cat, cow baseball bat, book, bottle, carrot, cell phone, cup, frisbee, hair dryer, handbag, knife dog, giraffe, horse bed, bench bicycle, cow, elephant bed, bench bed, bench

EXPERIMENT: Scenario 1. Verb-Transferability

Evaluate how well the network transfers the "seen" verbs paired with "unseen" objects

Seen (Train)

eat + apple eat + banana

apple, banana eat feed bird, cat, cow baseball bat, book, bottle, hold carrot, cell phone, cup, frisbee, hair dryer, handbag, knife kiss dog, giraffe, horse lie on bed, bench ride bicycle, cow, elephant sit on bed, bench bed, bench stand on wash bicycle, cow, dog

Unseen (Test)

eat + broccoli? feed + broccoli? hold + broccoli? kiss + broccoli? lie on + broccoli? ride + broccoli? sit on + broccoli? stand on + broccoli? wash + broccoli?

EXPERIMENT: Scenario 1. Verb-Transferability

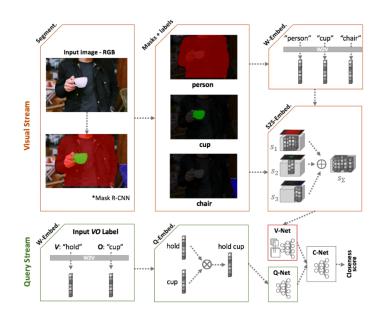
Evaluate how well the network transfers the "seen" verbs paired with "unseen" objects

Verb transferability evaluation. Baseline: Sung et al. [8], OrthoVec2S: Orthonormal Vectors-to-space, S2S: Semantics-to-space. All the numbers indicate recognition accuracy in [%].

Architecture	Sung et al.	OrthoVec2S	S2S
ResNet18	33.53	40.40	46.27
ResNet34	38.00	43.53	48.87
ResNet50	41.73	44.60	50.47

CONCLUSION:

Semantics to Space(S2S): Embedding semantics into spatial space for zero-shot verb-object query inferencing



- Introduced a simple, yet powerful semantics embedding approach for two-stream ZSL approach
- Augmented visual information by directly embedding the semantics in a spatial sense
- Validated that S2S can be used as a general module to enhance the performances of various ZSL baseline architectures

Please check out our manuscript!!