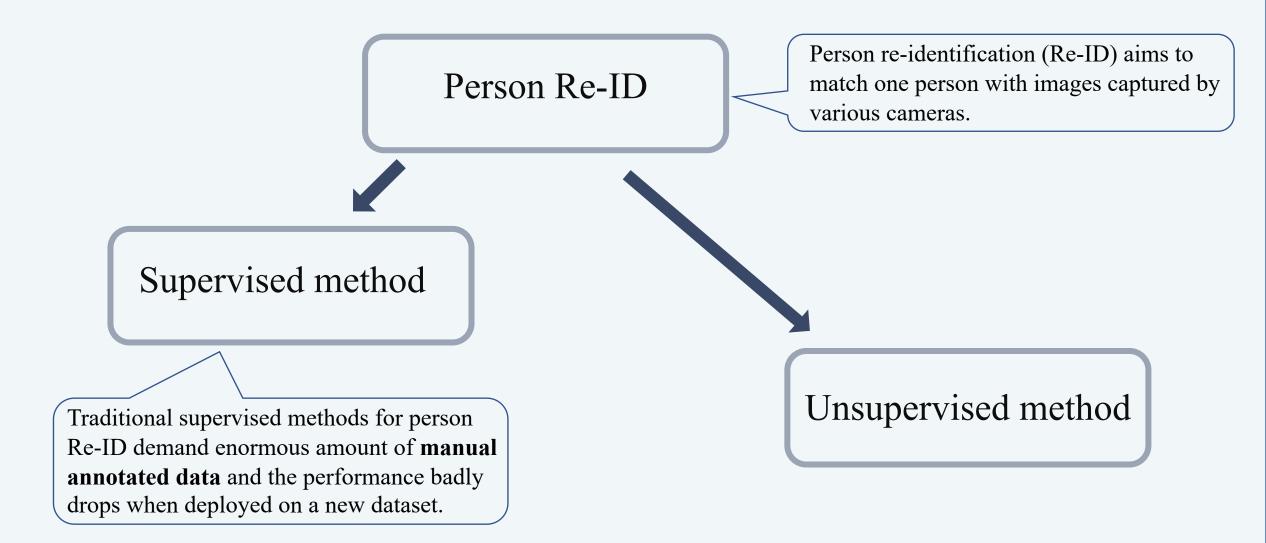
Self-paced Bottom-up Clustering Network with Side Information for Person Re-Identification


Mingkun Li, Chun-Guang Li, Ruopei Guo, and Jun Guo

Contents

- Introduction
- Method
- •Result
- Conclusions

Introduction

Person Re-Identification

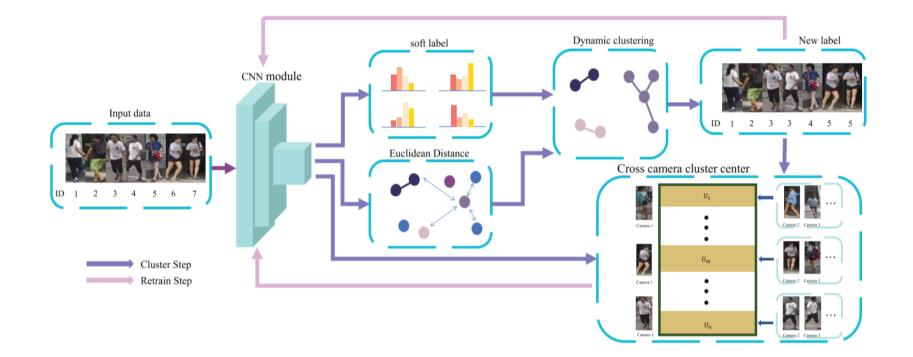
Introduction

Unsupervised Person Re-Identification

Method	Dataset	Need label		
Unsupervised domain adaptation (UDA)	Source dataset + Target dataset	Source datadset		
Pure unsupervised	Target dataset	None		

Introduction

Unsupervised Person Re-Identification



SPCNet-SI

Side information (Camera information)

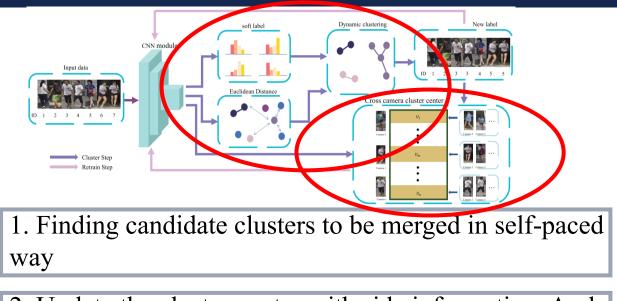
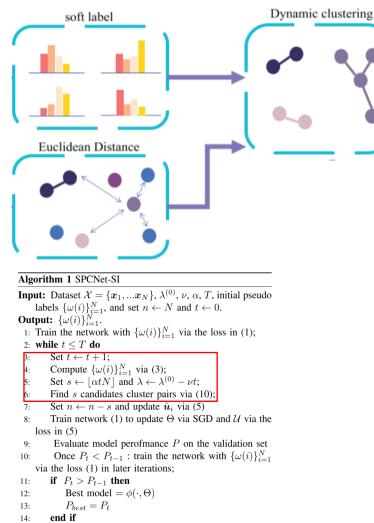
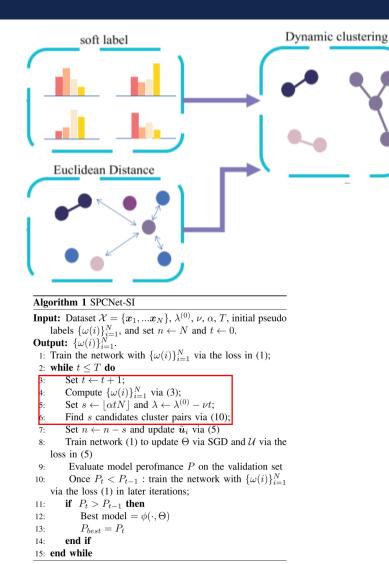

Method

Illustration for the SPCNet-SI.


SPCNet-SI

Algorithm 1 SPCNet-SI **Input:** Dataset $\mathcal{X} = \{x_1, ..., x_N\}, \lambda^{(0)}, \nu, \alpha, T$, initial pseudo labels $\{\omega(i)\}_{i=1}^N$, and set $n \leftarrow N$ and $t \leftarrow 0$. **Output:** $\{\omega(i)\}_{i=1}^{N}$. 1: Train the network with $\{\omega(i)\}_{i=1}^{N}$ via the loss in (1); 2: while $t \leq T$ do Set $t \leftarrow t+1$; 3: Compute $\{\omega(i)\}_{i=1}^N$ via (3); 4: Set $s \leftarrow |\alpha t N|$ and $\lambda \leftarrow \lambda^{(0)} - \nu t$; 5: Find *s* candidates cluster pairs via (10); 6: Set $n \leftarrow n - s$ and update \tilde{u}_i via (5) 7: Train network (1) to update Θ via SGD and \mathcal{U} via the 8: loss in (5)Evaluate model perofmance P on the validation set 9: Once $P_t < P_{t-1}$: train the network with $\{\omega(i)\}_{i=1}^N$ 10: via the loss (1) in later iterations; if $P_t > P_{t-1}$ then 11: Best model = $\phi(\cdot, \Theta)$ 12: $P_{best} = P_t$ 13: end if 14: 15: end while

2. Update the cluster center with side information. And train with cross-camera repelled loss


1. Finding candidate clusters to be merged in self-paced way

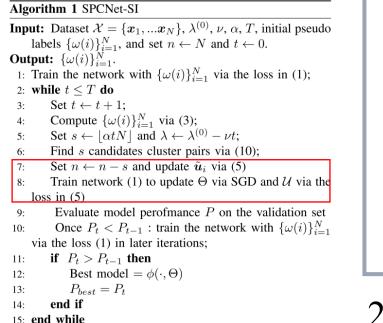
Find candidate clusters: $\Delta(\mathcal{C}_{k}, \mathcal{C}_{\ell}) = \delta(\mathcal{C}_{k}, \mathcal{C}_{\ell}) + \lambda(\Omega(\mathcal{C}_{k}) + \Omega(\mathcal{C}_{\ell}))$ $\begin{cases} \delta(\mathcal{C}_{k}, \mathcal{C}_{\ell}) = \min_{i \in \mathcal{C}_{k}, j \in \mathcal{C}_{\ell}} \|\varphi(\boldsymbol{x}_{i}, \Theta) - \varphi(\boldsymbol{x}_{j}, \Theta)\|_{2} \\ \Omega(\mathcal{C}_{k}) = \sum_{i \in \mathcal{C}_{k}} (1 - \gamma_{ik}), \quad \Omega(\mathcal{C}_{\ell}) = \sum_{j \in \mathcal{C}_{\ell}} (1 - \gamma_{j\ell}) \\ \gamma_{ij} = \frac{\exp(\boldsymbol{u}_{j}^{\top}\varphi(\boldsymbol{x}_{i}, \Theta)/\tau)}{\sum_{\ell=1}^{n} \exp(\boldsymbol{u}_{\ell}^{\top}\varphi(\boldsymbol{x}_{i}, \Theta)/\tau)} \end{cases}$

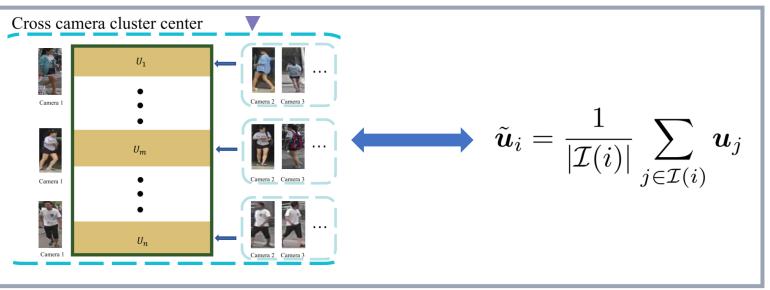
15: end while

1. Finding candidate clusters to be merged in self-paced way

Dynamic clustering:

a) Gradual Development Strategy:


$$s^{(t)} = \lfloor \alpha t N \rfloor$$


b) Annealing Scheme:

$$\lambda^{(t)} = \lambda^{(0)} - \nu t$$

2. Update the cluster center with side information and train with cross-camera repelled loss

1.Update the cluster center with side information :

2.cross-camera repelled loss :

$$\mathcal{L}(\boldsymbol{x}_i, \tilde{\boldsymbol{u}}_{\omega(i)}, \Theta) = -\ln \frac{\exp(\tilde{\boldsymbol{u}}_i^\top \varphi(\boldsymbol{x}_i, \Theta) / \tau)}{\sum_{\ell=1}^n \exp(\tilde{\boldsymbol{u}}_\ell^\top \varphi(\boldsymbol{x}_i, \Theta) / \tau)}$$

Result

method	Mark	et-1501	DukeMTMC-ReID			
	mAP	rank-1	mAP	rank-1		
Baseline*	30.1	64.1	22.7	43.0		
Baseline	33.4	67.2	25.4	45.6		
$s + \lambda^{(t)}$	34.9	67.7	26.6	45.8		
$s^{(t)}$ + λ	35.1	68.2	25.7	47.1		
$s^{(t)}$ + $\lambda^{(t)}$	34.9	68.7	27.7	47.8		

Ablation Study

Compare to the SOTA

	Market1501										
method Reference	mAP	rank-1	rank-5	rank-10	method	Reference	DukeMTMC-ReID				
LOMO [11]	CVPR'15	8.0	27.2	41.6	49.1	method	Reference	mAP	rank-1	rank-5	rank-10
Bow [41]	ICCV'15	14.8	35.8	52.4	60.3	LOMO [11]	CVPR'15	4.8	12.3	21.3	26.6
PUL [37]	TOMM'18	22.8	51.5	70.1	76.8	Bow [41]	ICCV'15	8.5	17.1	28.8	34.9
DECAMEL [42]	TPAMI'19	32.4	60.2	76.0		PUL [37]	TOMM'18	22.3	41.1	46.6	63.0
CAMEL[20]	Iccv'17	26.31	54.45	73.10	79.69	CAMEL[20]	Iccv'17	19.8	40.2	57.5	64.9
PGPPM [43]	CVPR'18	33.9	63.9	81.1	86.4	PGPPM [43]	CVPR'18	17.9	36.3	54.0	61.6
HHL [32]	ECCV'18	31.4	62.2	78.0	84.0	HHL [32]	ECCV'18	27.2	46.9	61.0	66.7
TJ-AIDL [36]	CVPR'18	26.5	58.2	74.8	-	TJ-AIDL [36]	CVPR'18	23.0	44.3	59.6	_
SPGAN [31]	CVPR'18	26.7	58.1	76.0	82.7	SPGAN [31]	CVPR'18	26.4	46.9	62.6	68.5
SyRI [23]	ECCV'18	-	65.7	-	-	PTGAN [30]	CVPR'18	13.5	27.4	43.6	-
PTGAN [30]	CVPR'18	15.7	38.6	57.3	-	BUC* [39]	AAAI'19	21.8	40.2	51.3	56.7
BUC* [39]	AAAI'19	28.7	60.6	73.5	77.2						
SPCNet-SI	Ours	34.9	68.7	85.2	88.9	SPCNet-SI	Ours	27.7	47.8	61.8	64.1

Conclusions

1.We designed a cross-camera repelled loss to exploits the camera side information and encourages to explore the association under different camera views.

2. We proposed a soft-label based assignment scheme in the bottom-up clustering.

3. We presented an effective dynamic strategy to regularize the cluster merging process to help select proper clusters to merge.

THANKS