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Uncertainty Estimation during Deep Learning

For regression tasks,
confidence of the model output is uncertain.
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Uncertainty Estimation during Deep Learning

The confidence of the model output is essential
especially in tasks where safety is important
such as depth estimations for automatic driving.
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[1] N. Silberman, et al. “Indoor segmentation and support inference from rgbd images.”, £ECCV; 2012.



Uncertainty Estimation during Deep Learning

The confidence of the model output is essential
especially in tasks where safety is important
such as depth estimations for automatic driving.
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— We predict aleatoric uncertainty, which is dependent on input.

[1] N. Silberman, et al. “Indoor segmentation and support inference from rgbd images.”, £ECCV; 2012.



Existing Works for Aleatoric Uncertainty Estimation

Gall?l, Kendall and Gall3!

Output and estimate both of targets and uncertainties.

output
X: input
uncertainty

[2] Y. Gal. “Uncertainty in deep learning.”, University of Cambridge, 2016.
[3] A. Kendall, et al. “What uncertainties do we need in bayesian deep learning for computer vision?”,
NIPS, 2017. S



Existing Works for Aleatoric Uncertainty Estimation
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Existing Works for Aleatoric Uncertainty Estimation
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A Problem of the Existing Works

Thereis a large difference between training errors and test errors.
— Optimizing w with training errors results in an inappropriate error estimation.
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The distribution of errors during an age estimation task.



Our Proposed Method

« Separate the loss function

Use virtual residuals 7

L=r+ A(e"7 —w)
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Production of Virtual Residuals

» Divide the training dataset and remove one subset
- Save validation errors of the removed subset
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Optimization using Virtual Residuals

- Use saved validation errors as virtual residuals
- w is optimized by the virtual residuals

L=r+ A(e"T7 —w)
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The Existing Method
[Kendall+, 2017] Proposed Method

L=e"r—w L=r+ A(e"T" —w)
- r and w are inseparable “ - r and w are separable
- cannot adjust the balance » can adjust the balance with

* use training errorr “ - use validation error
during w optimization during w optimization
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Experiments

1. Simulation 2. Age Estimation 3. Depth Estimation

UTKFace!” NYU depth v2!

[1] N. Silberman, et al. “Indoor segmentation and support inference from rgbd images.”, £ECCV; 2012.
[4] Z. Zhang, et al. “Age Progression/Regression by Conditional Adversarial Autoencoder”, CVPR, 2017. 13
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Experimental Result

 The existing method estimates errors to be much smaller
« Out method is effective in prediction of errors of the regression

Error estimations during the age estimation task.
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Experimental Result

« Our method outperformed the existing one in the quantitative evaluation

Quantitative evaluations during the age estimation task.

Method Target metric Uncertainty metrics
Target RMSE | eRMSE (| ) [PiR (0.5) (T)
(1)
L1 1.37 - -
[Kendall+, 2017] 1.51 6.10 0.352
Our method 7.27




Conclusion

« Problem
« Aleatoric uncertainty estimation during regression tasks
« The existing method tends to underestimate uncertainties

« OurProposed Method
« Introduced a separate formulation
« Trained the model using virtual residuals
« Effectively estimate test errors

« Experimental Results
« Outperformed the existing method in three different tasks



