## The Aleatoric Uncertainty Estimation Using a Separate Formulation with Virtual Residuals

Takumi Kawashima\*,Qing Yu\*,Akari Asai\*\*, Daiki Ikami\*†, Kiyoharu Aizawa\*

\* The University of Tokyo

\*\* The University of Washington

<sup>+</sup> Nippon Telegraph and Telephone Corporation

## Uncertainty Estimation during Deep Learning

# For regression tasks, confidence of the model output is uncertain.



## Uncertainty Estimation during Deep Learning

The confidence of the model output is essential especially in tasks where safety is important such as depth estimations for automatic driving.



## Uncertainty Estimation during Deep Learning

The confidence of the model output is essential especially in tasks where safety is important such as depth estimations for automatic driving.



→ We predict aleatoric uncertainty, which is dependent on input.

[1] N. Silberman, et al. "Indoor segmentation and support inference from rgbd images.", ECCV, 2012.

## Existing Works for Aleatoric Uncertainty Estimation

Gal<sup>[2]</sup>, Kendall and Gal<sup>[3]</sup>

Output and estimate both of targets and uncertainties.



[2] Y. Gal. "Uncertainty in deep learning.", *University of Cambridge*, 2016.
[3] A. Kendall, et al. "What uncertainties do we need in bayesian deep learning for computer vision?", *NIPS*, 2017.

### **Existing Works for Aleatoric Uncertainty Estimation**





### Existing Works for Aleatoric Uncertainty Estimation

$$L = \frac{1}{b} ||y - y^*|| - \log \frac{1}{b}$$
  
• inseparability of r and w  
• w is optimized by  
training error r  

$$L = e^w r - w$$
  

$$x: input$$

## A Problem of the Existing Works

There is a large difference between training errors and test errors. → Optimizing *w* with training errors results in an inappropriate error estimation.



The distribution of errors during an age estimation task.

## Our Proposed Method

- Separate the loss function
- Use virtual residuals  $\tilde{r}$



## Production of Virtual Residuals

- Divide the training dataset and remove one subset
- Save validation errors of the removed subset



## **Optimization using Virtual Residuals**

- Use saved validation errors as virtual residuals
- *w* is optimized by the virtual residuals

$$L = r + \lambda (e^w \tilde{r} - w)$$



11

The Existing Method [Kendall+, 2017]

$$L = e^w r - w$$

**Proposed Method** 

$$L = r + \lambda (e^w \tilde{r} - w)$$

*r* and *w* are inseparable
cannot adjust the balance



*r* and *w* are separable
can adjust the balance with

 use training error r during w optimization



 use validation error during w optimization

## Experiments

### 1. Simulation 2.

### 2. Age Estimation

### 3. Depth Estimation



#### UTKFace<sup>[4]</sup>



#### NYU depth v2<sup>[1]</sup>



[1] N. Silberman, et al. "Indoor segmentation and support inference from rgbd images.", *ECCV*, 2012.
[4] Z. Zhang, et al. "Age Progression/Regression by Conditional Adversarial Autoencoder", CVPR, 2017.

## **Experimental Result**

- The existing method estimates errors to be much smaller
- Out method is effective in prediction of errors of the regression

ervices in the set of the set of

Error estimations during the age estimation task.

## **Experimental Result**

• Our method outperformed the existing one in the quantitative evaluation

#### Quantitative evaluations during the age estimation task.

| Method           | Target metric | Uncertainty metrics |               |
|------------------|---------------|---------------------|---------------|
|                  | Target RMSE   | $eRMSE(\downarrow)$ | PiR (0.5) (↑) |
|                  | (↓)           |                     |               |
| L1               | 7.37          | -                   | -             |
| [Kendall+, 2017] | 7.51          | 6.10                | 0.352         |
| Our method       | 7.27          | 4.99                | 0.523         |

## Conclusion

- Problem
  - Aleatoric uncertainty estimation during regression tasks
  - The existing method tends to underestimate uncertainties
- Our Proposed Method
  - Introduced a separate formulation
  - Trained the model using virtual residuals
  - Effectively estimate test errors
- Experimental Results
  - Outperformed the existing method in three different tasks