

\Orchestrating a brighter world

Camera Calibration using Parallel Line Segments

Gaku Nakano g-nakano@nec.com Central Research Labs, NEC Corporation, Japan

© NEC Corporation 2020

Introduction

3D analysis from 2D video of surveillance cameras

Traffic estimation, pedestrian monitoring,... Requires camera parameters in 3D scene

Requirements for surveillance camera calibration

No large calibration objects No traffic restrictions

We propose a practical method for calibrating surveillance cameras.

© NEC Corporation 2020

Key Idea

Parallel line segments of the same length as calibration object
Traffic light

Key Idea

Parallel line segments of the same length as calibration object
Traffic light, Truck box, Pedestrian's height

Novelty: Calibration from >=2 line segments

Closed-form solution to

• Camera height, angles, focal length, 3D position of lines

Novelty: Calibration from >=2 line segments

Non-linear optimization including lens distortion

Refinement by minimizing reprojection error

Problem Formulation

Problem Formulation: Coordinate system

Camera

- Located at height h on z_w -axis.
- z_c -axis is aligned with y_w -axis.

Problem Formulation: Coordinate system

Camera

- Located at height h on z_w -axis.
- z_c -axis is aligned with y_w -axis.

Line segments

- on the ground plane z = 0.
- have the <u>same unknown</u> length ℓ .

Problem Formulation: Coordinate system

Camera

- Located at height h on z_w -axis.
- z_c -axis is aligned with y_w -axis.

Line segments

- on the ground plane z = 0.
- have the <u>same unknown</u> length ℓ .

Problem Formulation: # of lines needed to solve

Problem Formulation: # of lines needed to solve

Proposed Method

Proposed Method: Overview

Proposed Method: Direct Linear Solution

\Orchestrating a brighter world

Proposed Method: Non-linear Refinement

Real Data Experiments

V.S. checkerboard method on OpenCV

Accurate line segments from checkerboard corners

The proposed method can estimate the camera parameters close to that of OpenCV.

Evaluation on Open Dataset

FBK Task Decomposition

CMU Panoptic Studio

Human pose are detected by OpenPose

Neck-midhip connections as line segments for calibration.

Results: FBK Task Decomposition

		Focal length	Lens distortion	θ [deg]	$oldsymbol{\phi}$ [deg]	Height [m]
	Ground Truth	747	-0.356	27.7	6.9	2.78
	Proposed	715	-0.217	28.2	1.7	2.73
	Relative error	4.3%	39%	1.8%	75%	1.8%
	Ground Truth	731	-0.361	30.4	1.4	2.78
	Proposed	713	-0.204	27.7	1.7	2.66
	Relative error	2.5%	43.5%	8.9%	21%	4.3%

The camera parameters are accurately estimated only from human joints.

Results: FBK Task Decomposition

Lens distortion seems to be bad, however, the visual quality of undistortion is almost comparable.

Results: CMU Panoptic Studio

		Focal length	Lens distortion	heta [deg]	φ [deg]	Height [m]
	Ground Truth	1396	-0.286	40.0	2.2	3.12
	Proposed	1386	-0.203	41.7	-0.7	3.15
	Relative error	0.7%	29%	4.3%	131%	1.0%
	Ground Truth	1407	-0.283	12.7	-3.6	1.97
	Proposed	1330	-0.246	11.9	-3.1	1.94
	Relative error	5.5%	13%	6.3%	14%	1.5%

Surveillance cameras can be calibrated by observing a pedestrian.

Applications

Social Distancing Detection

Using the proposed method, we can calibrate surveillance cameras which were already installed in town to measure physical distance between pedestrians.

Planar Image Rectification

Frontal images can be recovered by specifying two edges of a rectangle.

Conclusions

Conclusions

Proposed a camera calibration method using line segments of the same length

- Can be solved by a closed-form.
- Radial distortion estimation by bundle adjustment.

Experimental results demonstrate

- Human joints (neck-midhip connection) are available for calibration including lens distortion.
- Calibration can be conducted without a large pattern nor traffic restrictions.

Orchestrating a brighter world

NEC creates the social values of safety, security, fairness and efficiency to promote a more sustainable world where everyone has the chance to reach their full potential.