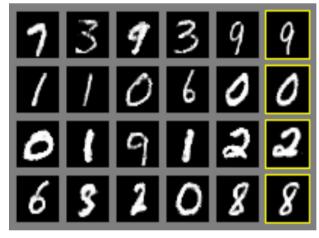


The Role of Cycle Consistency for Generating Better Human Action Videos from a Single Frame


Runze Li

Bir Bhanu

Visualization and Intelligent Systems Laboratory University of California Riverside

Motivation

Image Generation

GAN

Video Generation

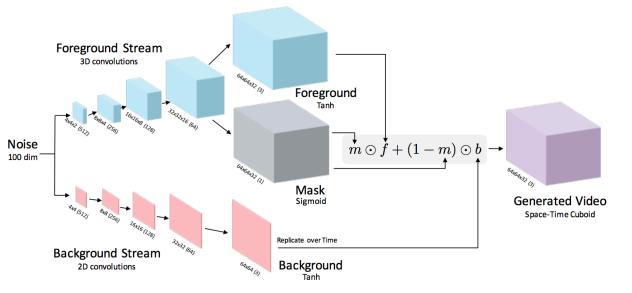
StyleGAN

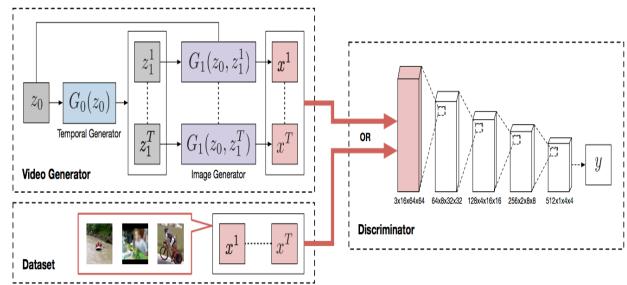
Progressive-growing GAN

- Generate videos with dynamics
- Generate videos with human action semantics

[1] Goodfellow, Ian, et al. "Generative Adversarial Nets." Advances in Neural Information Processing Systems 27, 2014.

[2] Karras, Tero, et al. "A Style-Based Generator Architecture for Generative Adversarial Networks." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019.


[3] Karras, Tero, et al. "Progressive Growing of GANs for Improved Quality, Stability, and Variation". The Sixth International Conference on Learning Representations, 2018.


[4] Vondrick, Carl, et al. "Generating Videos with Scene Dynamics". Advances in Neural Information Processing Systems 29, 2016.

Related Work

Video Generation

• Two-stream network

Saito, Masaki, et al.

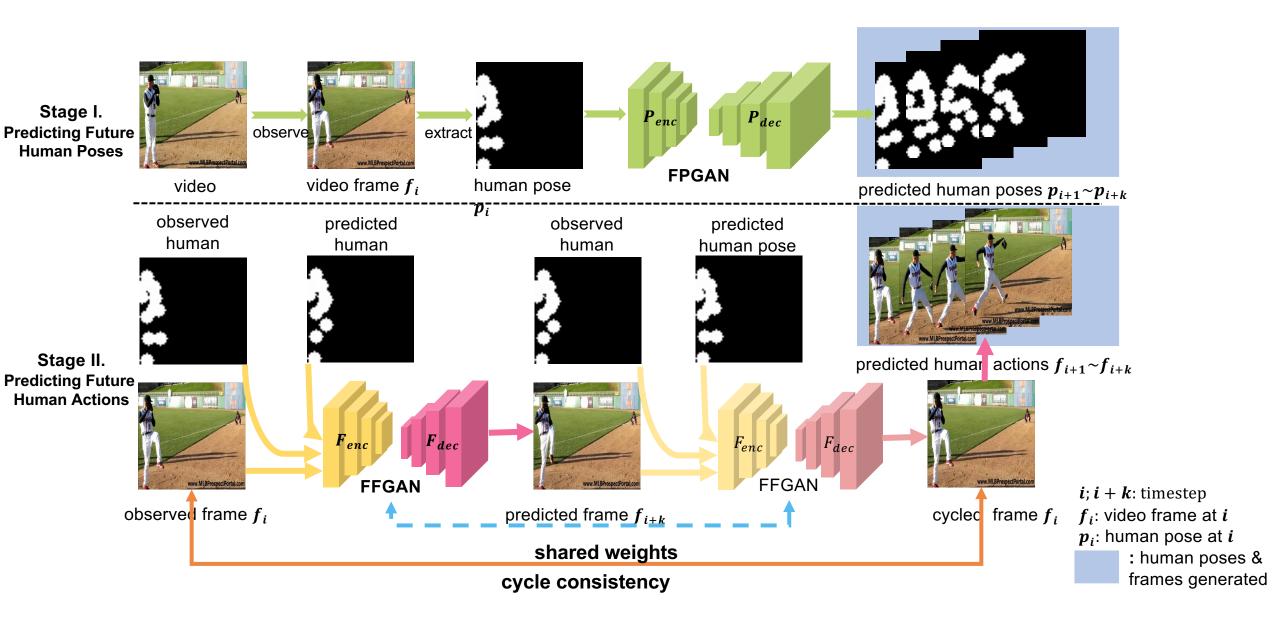
- Vondrick, Carl, et al.
- Two-stage network
 - Generate motions, then generate videos
 - Generate human poses, then generate videos

Key Ideas

Two-stages video prediction

 \bullet

Adapt a two-stage method to predict human poses and then to predict videos involving human action semantics in the future after observing a single frame.

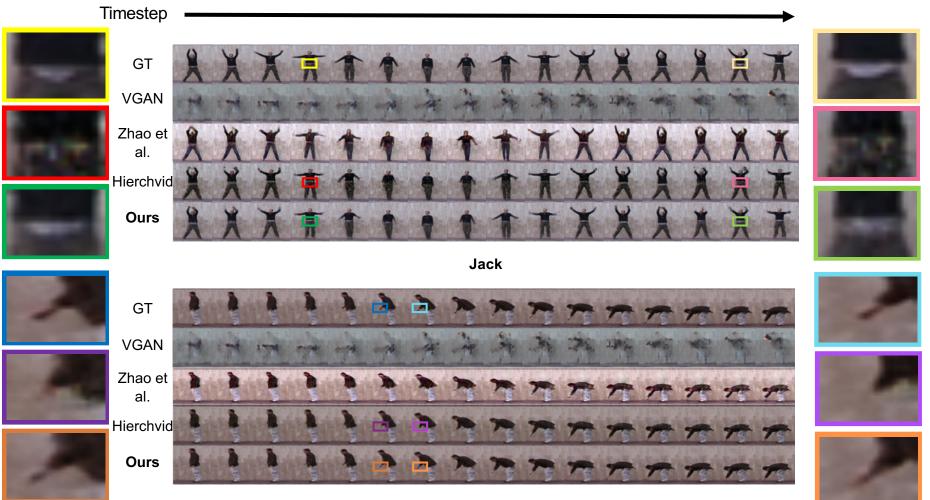

• Cycle-consistency constraints

Enforce the appearance and motion constraints via cycle consistency for generating human actions in the future.

• Extensive experiments

Conduct thorough qualitative and quantitative evaluations on both simple and complicated human action datasets.

Framework


Experimental Results– Weizmann Dataset

- Quantitative Results
- Evaluation Metrics
 - SSIM: structural similarity index measure.
 - ➢ MSE: mean squared error.
 - > PSNR: Peak signal-to-noise ratio.

Method	SSIM 个	MSE 🗸	PSNR 个		
VGAN (CVPR 2017)	0.1547	0.0628	12.0488		
Zhao et al. (ECCV 2018)	0.787	0.005	22.198		
Hierchvid (ICML 2017)	0.842	0.0026	25.7213		
Ours	0.9409	0.0018	28.6414		

Experimental Results– Weizmann Dataset

• Qualatitive Results

Experimental Results– Penn Action & UCF-101 Dataset

- Quantitative Results
- Evaluation Metrics
 - ➢ SSIM, MSE, PSNR.
 - ➢ IS: Inception score.
 - FID: Fréchet Inception Distance.

	Penn Action					UCF-101				
Method	SSIM 个	MSE \downarrow	PSNR 个	IS ↑	FID \downarrow	SSIM 个	MSE \downarrow	PSNR 个	IS ↑	FID ↓
Zhao et al.	-	0.023	18.25	-	-	-	-	-	-	-
Hierchvid	-	0.03	15.875	-	-	-	-	-	-	-
SCGAN-gen	-	-	-	-	-	0.73	-	-	-	-
SCGAN-full	-	-	-	-	-	0.87	-	-	5.7	-
Zhao et al.	0.568	0.063	12.372	3.012	34.39	0.73	0.065	12.247	3.646	61.729
Hierchvid	0.57	0.0456	13.5348	3.1019	37.96	0.7	0.07	12	3.7	50
Ours	0.799	0.016	18.292	3.247	19.315	0.75	0.03627	13.8408	4.59	25.3384

[1] Zhao et al., ECCV 2018.

[2] Hierachvid, ICML 2017.

[3] SCGAN, ECCV 2018.

Experimental Results– Penn Action Dataset


• Qualatitive Results

Action: baseball pitch

Experimental Results– Penn Action Dataset

• Qualatitive Results

Action: tennis swing

Experimental Results – UCF-101 Dataset

• Qualatitive Results

Timestep.

Action: basketball & criket swing

Summary

- Generating human action videos with a single shot
- Employing a two-stage network, predict human poses then predict human action videos
- Maintaining appearance and motion consistency across generated human action videos
- > Performing quantitative and qualitative experiments

Acknowledgements

This material is based upon work supported in part by the National Science Foundation under Grant No. 1911197.