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Image Generation

Video Generation
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• Generate videos with dynamics
• Generate videos with human action semantics



Related Work
Video Generation

• Two-stream network

Vondrick, Carl, et al. Saito, Masaki, et al.

• Two-stage network
Ø Generate motions, then generate videos
Ø Generate human poses, then generate videos



Key Ideas
• Two-stages video prediction

Adapt a two-stage method to predict human poses and then to predict videos involving 
human action semantics in the future after observing a single frame.

• Cycle-consistency constraints
Enforce the appearance and motion constraints via cycle consistency for generating human 
actions in the future.

• Extensive experiments 
Conduct thorough qualitative and quantitative evaluations on both simple and complicated 
human action datasets.
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Experimental Results– Weizmann Dataset

Method SSIM ↑ MSE ↓ PSNR ↑

VGAN (CVPR 2017) 0.1547 0.0628 12.0488

Zhao et al. (ECCV 2018) 0.787 0.005 22.198

Hierchvid (ICML 2017) 0.842 0.0026 25.7213

Ours 0.9409 0.0018 28.6414

• Quantitative Results
• Evaluation Metrics

Ø SSIM: structural similarity index measure.
Ø MSE: mean squared error.
Ø PSNR: Peak signal-to-noise ratio.
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• Qualatitive Results



Experimental Results– Penn Action & UCF-101 Dataset

Penn Action UCF-101

Method SSIM ↑ MSE ↓ PSNR ↑ IS ↑ FID ↓ SSIM ↑ MSE ↓ PSNR ↑ IS ↑ FID ↓

Zhao et al. - 0.023 18.25 - - - - - - -

Hierchvid - 0.03 15.875 - - - - - - -

SCGAN-gen - - - - - 0.73 - - - -

SCGAN-full - - - - - 0.87 - - 5.7 -

Zhao et al. 0.568 0.063 12.372 3.012 34.39 0.73 0.065 12.247 3.646 61.729

Hierchvid 0.57 0.0456 13.5348 3.1019 37.96 0.7 0.07 12 3.7 50

Ours 0.799 0.016 18.292 3.247 19.315 0.75 0.03627 13.8408 4.59 25.3384

• Quantitative Results
• Evaluation Metrics

Ø SSIM, MSE, PSNR.
Ø IS: Inception score.
Ø FID: Fréchet Inception Distance.

[1] Zhao et al.,ECCV 2018.
[2] Hierachvid, ICML 2017.
[3] SCGAN, ECCV 2018.



• Qualatitive Results

Experimental Results– Penn Action Dataset
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• Qualatitive Results

Experimental Results– Penn Action Dataset

Action: tennis swing



• Qualatitive Results

Experimental Results – UCF-101 Dataset
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Ø Generating human action videos with a single shot
Ø Employing a two-stage network, predict human poses 

then predict human action videos
Ø Maintaining appearance and motion consistency across 

generated human action videos
Ø Performing quantitative and qualitative experiments 
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