PS T3.8 25th International Conference on Pattern Recognition (ICPR2020)

Improving reliability of attention branch network by introducing uncertainty

Takuya Tsukahara, Tsubasa Hirakawa,

Takayoshi Yamashita, Hironobu Fujiyoshi (Chubu University)

MACHINE PERCEPTION AND ROBOTICS GROUP

Recognition system using machine learning

- Output recognition result and score (model reliability)
 - Do not consider the confidence of score
 - Ex. Driver assistance system
 - Misclassification the white side of the trailer as empty
 → Fatal accident

Considering uncertainty leads suppression of misjudgment

 Represent the weight of a network model by probability distribution

Monte Carlo Dropout (MCDO) [Gal+, ICML2016]

- Approximate inference of large-scale and complex models
 - Apply dropout on each layer

Low entropy → **Low** uncertainty

Monte Carlo Dropout (MCDO) [Gal+, ICML2016]

- Approximate inference of large-scale and complex models
 - Apply dropout on each layer

High entropy → **High** uncertainty

• Improving CNN reliability by considering uncertainty

Proposed method

- Bayesian Attention Branch Network
 - Apply MCDO to Attention Branch Network
 - Uncertainty of the prediction result could be taken into account
 - Increased accuracy and reliability of CNN

- CNN method applying attention mechanism
 - Attention mechanism improves CNN recognition accuracy
 - Provides visual explanation by attention map

Bayesian Attention Branch Network [1/2]

- Introduce uncertainty estimation into ABN
 - Apply MCDO
 - Added dropout to residual blocks 3 and 4
 - Use dropout during learning and evaluation

Bayesian Attention Branch Network [2/2]

- Introduce uncertainty estimation into ABN
 - Sampling by MCDO
 - Average : Output result estimation
 - Entropy : Uncertainty estimation
 - Adopt the result of branch with low uncertainty as the result

Evaluation

- Dataset : ImageNet dataset
- Base network : ResNet (152 layers)

Methods	Top-1 accuracy [%]	Top-5 accuracy [%]
ResNet	77.81	
ABN	79.35	94.55
Bayesian ABN	80.31	95.01

Bayesian ABN achieved the highest recognition accuracy

Assessing the effectiveness of uncertainty

- MACHINE PERCEPTION AND ROBOTICS GROUP
- Recognition accuracy over different reliability threshold
 - Use the following values as a reliability
 - Uncertainty
 - Class score

Introducing uncertainty improves reliability

Summary

- We propose a Bayesian ABN
 - Improve recognition accuracy by introducing uncertainty
 - Top-1 accuracy : **0.96 points** improvement compared to ABN
 - Top-5 accuracy : **0.49 points** improvement compared to ABN
 - Uncertainty can be used to improve model reliability
 - **Reliability is improved** by using uncertainty