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* For many high dimensional data, their intrinsic
dimension is often much smaller than the
dimension of the ambient space.

* (Subspace Clustering)

Let X = [xq,%y,...,xy] € RP*N be a given set of
points drawn from k linear or affine subspaces
{S;}¥_,. The goal of subspace clustering is to find
the segmentation of the points according to the
subspaces.
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Self-representation based Subspace Clustering

These methods are based on the self-expressiveness property of data lying in a
union of subspaces, which states that each point in a union of subspaces can be
written as a linear combination of other data points in the subspaces.

where Z;; = 0 if the i-th and j-th data points are from different subspaces.

Therefore, in the case of k subspaces, Z has the following block diagonal form
through some transformations

Z, 0 0

0 Z 0

Z = . .
0 0 Z |
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Sparse Subspace Clustering (SSC)

SSC calculates the similarity among data points by solving the following
optimization problem:

min Zl
s

st. X=XZ, Z;=0
Low-Rank Representation (LRR)

LRR uses the lowest rank representation rather than the sparsest representation to
build the similarity graph. The objective function of LRR is:

min | Z],
Z

s.t. X =XZ

Sparse subspace clustering. CVPR, 2009
Robust Subspace Segmentation by Low-Rank Representation. ICML, 2010
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Motivation

Kronecker product:

A® B

_a11 X B

_(L?n 1 X B

Conventional sparse
subspace clustering:

X =XC — =

Kronecker product
based model:
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* Formulation:

min [|X — X(C1® Co)||F + A C1 @ Co[F:

* Optimization:

IX — X(Cr @ o)}
—tr((X — X(C1 ® Cy))" (X — X(C1 @ Cy)))
—[|X[|2 — 2tr(X (Cy @ C)XT)

+tr(X(Cp @ Co)(X(Cy @ Ca))1)

b = —2tr(X(C1®@C2) X ) +tr(X(C1202) (X (C1@C3))")
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Algorithm:
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Algorithm 1: Subspace Clustering Based on Kronecker
Product.

Input: A set of data points X = {x;}) . the number of
subspaces 7, the number of small matrices £ and
the balance parameter A.
Steps:
|. Learn the small matrices C'y,C5. .- ., C}..
fori=1.....k do
Fix Cl: e C?'__l, C?'__|_1, s Ck, update C/l
Optimize Eq. (8), estimate C'; by ridge regression

solution.
end

2. Calculate the self-representation coefficient matrix '
by the Kronecker product of small matrices,
C =k, C.

3. Construct an affinity matrix by W = |C| +
4. Calculate the Laplacian matrix L of V.

5. Calculate the eigenvector matrix V' of L corresponding
to its n smallest nonzero eigenvalues.

6. Perform k-means clustering algorithm on the rows of
V.

Output: The clustering result of X.
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The subspace clustering performance on the CMU PIE dataset.

No. Objects 5 Objects 10 Objects 20 Objects 40 Objects 60 Objects
' ) Time | Acc. Time | Acc. Time | Acc. Time | Acc. Time | Acc.
SSC 243.6 | 92.47 1182 89.25 3618 84.31 14502 | 82.37 - -
KrSSC 12.7 91.28 26.8 88.27 | 61.4 | 83.80 | 150.2 | 81.75 | 274.3 | 79.48
LRR 216.4 | 94.53 852.5 92.14 2743 89.21 11463 85.47 - -
KrLRR 9.7 02.51 204 | 90.72 | 57.2 | 88.13 | 145.8 | 8521 | 254.8 | 83.65
TRR 152.7 97.35 548.2 96.05 2167 94.54 8427 01.74 - -
KrTRR 7.5 05.21 18.3 | 9452 | 52.8 | 93.84 | 143.5 | 90.23 | 260.1 | 87.26
NVR3 190.5 98.51 624.6 | 97.51 253 95.75 11826 03.15 - -
KrNVR3 11.3 | 97.14 | 257 9626 | 724 | 9396 | 1804 | 91.57 | 312.5 | 89.15
The subspace clustering performance on the MNIST dataset.
No. Poins 500 1000 10000 30000 70000
' ) Time | Acc. Time | Acc. Time | Acc. Time | Acc. Time | Acc.
SSC 152.4 83.36 638.2 82.45 - - - - - -
KrSSC 7.3 81.25 18.7 81.17 | 1924 | 7942 | 411.5 | 76.15 | 683.2 | 73.34
LRR 145.5 | 85.75 | 614.8 | 85.14 - - - - - -
KrLRR 7.1 83.24 16.4 83.20 | 160.8 | 81.52 | 384.5 | 79.21 | 641.5 | 76.53
TRR 113.2 | 90.28 | 476.4 | 89.78 - - - - - -
KrTRR 6.5 88.95 15.8 88.65 | 168.2 | 85.76 | 403.8 | 83.26 | 795.6 | 81.53
NVR3 118.5 91.85 531.1 91.28 - - - - - -
KrNVR3 8.3 90.08 22.5 90.14 | 243.6 | 86.27 | 627.5 | 83.87 | 968.4 | 8241

01/12/2021




The subspace clustering performance on the synthetic dataset.

No. Points 500 5000 10000 50000 100000
' ) Time | Acc. Time | Acc. Time | Acc. Time | Acc. Time | Acc.
SSC 1354 | 94.15 1824 | 93.86 | 5413 91.05 - - - -
KrSSC 6.2 02.12 534 01.18 | 164.2 | 89.73 | 231.5 | 85.04 | 285.7 | 81.85
LRR 118.6 | 95.27 1645 | 94.57 4853 92.14 - - - -
KrLRR 6.0 03.24 49.3 092.21 152.7 | 89.49 | 216.2 | 86.03 | 274.3 | 82.20
TRR 89.5 08.85 1627 | 97.15 5825 95.69 - - - -
KrTRR 5.9 08.06 46.7 06.53 | 185.3 | 95.05 | 250.3 | 93.16 | 314.2 | 89.06
NVR3 96.4 99.9] 1752 | 98.61 6024 | 97.10 - - - -
KrNVR3 6.0 99.07 52.8 08.11 207.5 | 96.24 | 260.1 | 93.89 | 321.5 | 90.62
E | 2 3 4 5
average running time (seconds):
KrSSC 715.6  285.7 61.2 254
KrLRR 682.5 2743 52.7 20.6
. . . KrTRR 755.1 314.2 84.3 31.5
The average running time qnd c_Iusterlng KINVR3 | 7943 3215 916 362
accuracy of our methods with different k. average clustering accuracy:
KrSSC 83.14 81.85 7542 67.25
KrLRR 84.43 8220 T77.16 68.17
KrTRR 90.75 89.06 84.27 73.41
KrNVR3 | 9254 90.62 85.34 75.24
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Conclusions

« Main Contributions

— We have presented a fast subspace clustering model based on the
Kronecker product. We learn the representation matrix of spectral
clustering using the Kronecker product of a set of smaller matrices.

— The memory space and computational complexity of our methods
achieve significant efficiency gain compared with several baseline
approaches.

— Moreover, we have presented results on synthetic data which has
verified the scalability of our methods on large scale datasets.
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Thanks for watching!
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