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Abstract
Deep neural networks (DNN) have been applied recently to different domains and perform better than classical

state-of-the-art methods. However the high level of performances of DNNs is most often obtained with networks
containing millions of parameters and for which training requires substantial computational power. To deal with
this computational issue proximal regularization methods have been proposed in the literature but they are time
consuming.
In this paper, we propose instead a constrained approach. We studied algorithms for different constraints: the clas-
sical `1 unstructured constraint and structured constraints such as the `2,1 constraint (Group LASSO). We propose a
new `1,1 structured constraint for which we provide a new projection algorithm. Finally, we used the recent ”Lottery
optimizer” replacing the threshold by our `1,1 projection. We demonstrate the effectiveness of this method with three
popular datasets (MNIST, Fashion MNIST and CIFAR). Experiments with these datasets show that our projection
method using this new `1,1 structured constraint provides the best decrease in memory and computational power.

Classical Group LASSO structured constraint
Group LASSO was first introduced in [3]. The main idea is to enforce parameters of different classes
to share common features. Group sparsity reduces so complexity by eliminating entire features. It
consists in using the `2,1 norm for the constraint on W , which is defined as follows. The rowwise `2,1
norm of a d× k matrix W (whose rows are denoted wi, i = 1, . . . , d) is

‖W‖2,1 :=
d∑
i=1

‖wi‖2. (1)

A new `1,1 structured constraint

Unfortunately, the Group LASSO structured constraint algorithm [1] does not provide efficient spar-
sity. Thus we propose the following algorithm.

Algorithm 1 Projection on the `1,1 norm (proj`1(V, η) is the projection on the `1-ball of radius η)
Input: V, η
t := proj`1((‖vi‖1)

d
i=1, η)

for i = 1, . . . , d do
wi := proj`1(vi, ti)

end for
Output: W

Analysis of the structured-`1,1 projection: While the algorithm above does not strictly speaking
define a projection, its solution corresponds to solving a sort of bi-level projection and is easily shown
to be obtained as a limit, as ε goes to zero, of the minimizers of the convex problem:

min∑
i ti≤η∑

j |wi,j|−ti≤0

d∑
i=1

 k∑
j=1

|vi,j| − ti

2

+ ε

d∑
i=1

k∑
j=1

(vi,j − wi,j)2. (P)

In other words, (t, w) ∈ Rd+ × Rd×k can be seen as the projection of ((
∑
j |vi,j|)di=1, v) onto the

convex set {(t, w) :
∑d
i=1 ti ≤ η,

∑k
j=1 |wi,j| ≤ ti ∀i = 1, . . . , d} in a degenerate (lexicographic)

distance which infinitely favors the t component over the w variable.

Lottery optimizer

Following the work of Frankle and Carbin, who proposed an algorithm to find sparse sub-networks.
We replaced their thresholding by our `1,1 projection and devised the following algorithm:

Algorithm 2 Projection on the `1,1 norm. Here proj`1(V, η) is the projection on the `1-ball of radius
η, ∇L(W,M0) is the masked gradient with binary mask M0, f is the ADAM optimizer and γ is the
learning rate

Input: W∗, γ, η
for n = 1, . . . , N(epochs) do
V ← f (W, γ,∇L(W ))

end for
t := proj`1((‖vi‖1)

d
i=1, η)

for i = 1, . . . , d do
wi := proj`1(vi, ti)

end for
Output: W,M0
Input: W∗
for n = 1, . . . , N(epoch) do
W ← f (W, γ,∇L(W,M0))

end for
Output: W

Results and comparison of methods:

Results on MNIST with a convolutionnal Network
We selected the popular MNIST dataset containing 28 × 28 grey-scale images of handwritten digits
of 10 classes (from 0 to 9). This dataset consists of a training set of 60,000 instances and a test set of

10,000 instances.
We consider a neural network with two convolutional layers and two linear layers denoted as Net4.

Methods Memory MACCs Accuracy
(kBytes) (k-MACCs) (%)

Adam 33.64 480 99.
Proj `1 (η = 80) 10.9 477 99.01

Proj `1,1 (η = 25) 2.1 122 97.4

Results on MNIST with two Linear fully connected Networks
We used first a linear fully connected network (LFC4) with an input layer of d neurons, 4 hidden lay-
ers followed by a RELU activation function and a latent layer of dimension k. We used a linear fully
connected network (LFC4) with an input layer of d neurons, 4 hidden layers followed by a RELU
activation function and a latent layer of dimension k.

Second, we provide results using LeNet 300/100 a popular Linear Fully connected Network for
benchmarking [2].

Methods Memory MACCs Accuracy
(kBytes) (k-MACCs) (%)

ADAM 477 266.2 98.21
Proj `1 (η = 200) 61 189 98.03

Proj `1,1 (η = 200) 32 62 96.4
Proj `1,1 (η = 400) 83 150 97.8
Proj `2,1 (η = 50) 164 257 98.1

Tartaglione [2] 33.7 - 96.6

This table shows that our method outperforms the state-of-the-art [2] in terms of bytes accuracy com-
promise. The figures and tables show that the main advantage of our method using the `1,1 constraint
over `1 is the reduction of the calculation cost (MACCs) by a factor 14 when using a LFC4 network
which is crucial for low capacity devices such as smartphones. The performance in MACCs using the
`2,1 constraint is intermediate between the use of `1 and `1,1. Note that, to the best of our knowledge
no results have been published in terms of FLOP reduction on this basis.

Results on CIFAR10
The CIFAR-10 data set is composed of 60,000 32x32 color images, 6,000 images per class, for a
classification in 10 classes. The training set is made up of 50,000 images, while the remaining 10,000
are used for the testing set. We use Simplenet, a network composed of 13 blocks.

Methods MACCs Memory Accuracy
(M-MACCs) (M-Bytes) %

Adam 631.51 9.44 93.8
Proj `1 (η = 13000) 626.08 1.45 91.12

Proj `1,1 (η = 14000) 441 0.86 91

The table and figures show a large global decrease in memory by a factor of 10. On the other hand the
decrease in the calculation cost was about 30% for the `1,1 constraint and almost null for `1 constraint.
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