Wasserstein k-means with sparse simplex projection

Takumi Fukunaga1 Hiroyuki Kasai 2,3

1Dept. of Computer Science and Engineering, School of Fundamental Science and Engineering, Waseda University, Japan

2Dept. of Communications and Computer Engineering, School of Fundamental Science and Engineering, Waseda University, Japan

3Dept. of Computer Science and Communications Engineering, Graduate School of Fundamental Science and Engineering, Waseda University, Japan

December 9, 2020
Introduction

Wasserstein k-means

- Propose
 - Improvement of computational cost of Wasserstein k-means
- Fast and efficient approaches
 - [Cuturi and Doucet, 2014, Bonneel et al., 2015, Anderes et al., 2016]
- Contribution of our methods
 - Sparsifying data on probability simplex and shrinking them by removing the zero elements
Introduction

Clustering Algorithm and its issue

- **k-means** [Lloyd, 1982]
 - High computational cost per iteration $\mathcal{O}(qk)$
 - Efficient approaches
 - [Arthur and Vassilvitskii, 2007, Kanungo et al., 2002]

- **Wasserstein k-means** [Ye et al., 2017]
 - Adopting Wasserstein distance and Wasserstein barycenter
 - High computational cost to calculate its distance
 $\mathcal{O}(n^3 \log n)$ [Cuturi, 2013, Rubner et al., 2000]

assignment step

$$s_i = \arg\min_{j=1,\ldots,k} d(x_i, c_j), \forall i \in [q]$$

update step

$$c_j = \text{mean}(\{x | s_i = j\}) \quad \text{or} \quad \text{barycenter}(\{x | s_i = j\}), \forall j \in [k]$$
Introduction

Optimal Transport

▶ Calculate the minimum transport cost [Peyre and Cuturi, 2019]
▶ When $n = m$, its cost is called Wasserstein distance of order p
▶ Using this distance, calculate Wasserstein barycenter [Benamou et al., 2015]

\[
T^* = \arg \min_{T \in \mathcal{U}_{mn}} \langle T, C \rangle \\
W_p(\mu, \nu) = \min_{T \in \mathcal{U}_{mn}} \langle T, C \rangle = \langle T^*, C \rangle \\
g(\mu) = \frac{1}{n} \sum_i W_p(\mu, \nu_i)
\]

▶ ν and μ of points
▶ a and b are in probability simplex
▶ C is ground matrix
▶ Row and Column marginal constraint

\[
\mathcal{U}_{mn} = \{ T \in \mathbb{R}^{m \times n}_+ : T \mathbf{1}_n = a, T^T \mathbf{1}_m = b \}\]
Proposal

Motivation

- Reduce the size of data and centroid
- Adopt two following approaches

1. Sparsify datas
 - Make data sparser than the original ones
 - Maintain degradation of the clustering quality as small as possible

2. Shrink datas
 - No degradation
 - Key operator to reduce the computational complexities
Proposal

Basic idea - Sparse simplex projection

- Sparse simplex projection GSHP [Kyrillidis et al., 2013]

\[
\hat{\beta} = \text{Proj}^{(t)}(\beta) = \begin{cases}
\hat{\beta}|_{S^*} = P_{\Delta_\kappa}(\beta|_{S^*}) \\
\hat{\beta}|_{(S^*)^c} = 0,
\end{cases}
\]

- \(S \) is the subset of \(N = \{1, \ldots, n\} \)
- \(a|_S \) extracts the elements of \(S \) in \(a \)
- \((P_{\Delta_\kappa}(\beta|_{S^*}))_v = [(\beta|_{S^*})_v + \tau]^+ \), \(\tau := \frac{1}{\kappa}(1 + \sum_{S^*}|\beta|_{S^*}) \)
- \(S^* = \text{supp}(P_{\Delta_\kappa}) \)
 - \(\text{supp}(a) = \{i : a_i \neq 0\} \)
Proposal

Basic idea - Shrinking datas

- The zero elements don’t have effect on transport matrix
 - Removing the zero elements
 - Define shrinking operator to vector and matrix

\[
\tilde{v}_i = \text{shrink}(\hat{v}_i) = (\hat{v}_i)|_{S_{\text{samp}}} \in \mathbb{R}^{|S_{\text{samp}}|}
\]
\[
\tilde{c}_i = \text{shrink}(\hat{c}_i) = (\hat{c}_i)|_{S_{\text{cent}}} \in \mathbb{R}^{|S_{\text{cent}}|}
\]
\[
\tilde{C} = \text{Shrink}(C_{\nu c}) = C_{\text{supp}(\hat{v}_i), \text{supp}(\hat{c}_i)} \in \mathbb{R}^{|S_{\text{samp}}| \times |S_{\text{cent}}|}
\]

\[
\text{supp}(a) = \{2,3,5,6\}
\]

\[
\begin{pmatrix}
0 & 1 & 4 & 9 & 16 & 25 & 36 \\
1 & 0 & 1 & 4 & 9 & 16 & 25 \\
4 & 1 & 0 & 1 & 4 & 9 & 16 \\
9 & 4 & 1 & 0 & 1 & 4 & 9 \\
16 & 9 & 4 & 1 & 0 & 1 & 4 \\
25 & 16 & 9 & 4 & 1 & 0 & 1 \\
36 & 25 & 16 & 9 & 4 & 1 & 0 \\
\end{pmatrix}
\]

\[
\begin{pmatrix}
1 & 4 & 16 & 25 \\
1 & 0 & 4 & 9 \\
4 & 1 & 1 & 4 \\
9 & 4 & 0 & 1 \\
\end{pmatrix}
\]
Proposal

Basic procedure

1. Update sparsity ratio $\gamma(t)$
2. Project ν_i into $\hat{\nu}_i$ and shrink $\hat{\nu}_i$ into $\tilde{\nu}_i$
3. Project c_j into \hat{c}_j and shrink \hat{c}_j into \tilde{c}_i
4. Shrink ground cost matrix C into \tilde{C}
5. Find closest centroids and update centroids
6. Unless cluster centroids stop changing, repeat step 1

▶ Control parameter of sparse ratio $\gamma(t)$

$$\gamma(t) := \begin{cases}
\gamma_{\text{min}} & \text{(FIX)} \\
1 - \frac{(1 - \gamma_{\text{min}})}{T_{\text{max}}} t & \text{(DEC)} \\
\gamma_{\text{min}} + \frac{(1 - \gamma_{\text{min}})}{T_{\text{max}}} t & \text{(INC)},
\end{cases}$$

▶ T_{max} is maximum iteration of k-means
Experiment

Settings

- Use of Algorithm
 - Wasserstein barycenter [Cuturi and Doucet, 2014]
 - \(k\)-means with litekmeans
 - linprog of Mosek to solve LP [Andersen et al., 2000]

- Datasets
 - COIL-100 [Nene et al., 1996]
 - the USPS handwritten dataset
Experiment

2-D histogram evaluation

Figure: Performance results of 2-D histogram data on the USPS dataset.
Experiment

Convergence Performance

Figure: Left: Convergence performance with different projection data using DEC algorithm of $\gamma_{\min} = 0.5$ Right: Convergence performance comparison of different algorithm of $\gamma(t)$ of $\gamma_{\min} = 0.5$
Experiment

Comparison on different sparsity

Figure: Performance comparison on different ratios on the USPS dataset.
Experiment

Conclusion

- We propose a faster Wasserstein k-means algorithm
- Our experiments demonstrate the effectiveness of our method
 - Reducing the computational complexity of Wasserstein distance
 - Keeping accuracy before sparsifying and shrinking
References

References II

References III

References IV

Thank you for listening.