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Introduction
Wasserstein k-means

▶ Propose
▶ Improvement of computational cost of Wasserstein k-means

▶ Fast and efficient approaches
▶ [Cuturi and Doucet, 2014, Bonneel et al., 2015, Anderes et al., 2016]

▶ Contribution of our methods
▶ Sparsifying data on probability simplex and shrinking them by

removing the zero elements
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Introduction
Clustering Algorithm and its issue

▶ k-means [Lloyd, 1982]
▶ High computational cost per iteration O(qk)

▶ Efficient approaches
[Arthur and Vassilvitskii, 2007, Kanungo et al., 2002]

▶ Wasserstein k-means [Ye et al., 2017]
▶ Adopting Wasserstein distance and Wasserstein barycenter

▶ High computational cost to caluculate its distance
O(n3 logn)[Cuturi, 2013, Rubner et al., 2000]

assignment step

si = arg min
j=1,...,k

d(xi, cj), ∀i ∈ [q]

update step

cj = mean({x|si = j}) or barycenter({x|si = j}), ∀j ∈ [k]
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Introduction
Optimal Transport

▶ Caluculate the minimum transport cost [Peyre and Cuturi, 2019]
▶ When n = m, its cost is called Wasserstein distance of order p
▶ Using this distance, calculate Wasserstein barycenter

[Benamou et al., 2015]

T∗ = arg min
T∈Umn

⟨T,C⟩

Wp(µ,ν) = min
T∈Umn

⟨T,C⟩ = ⟨T∗,C⟩

g(µ) =
1

n

∑
i

Wp(µ,νi)

▶ ν and µ of points
▶ a and b are in probability simplex
▶ C is ground matrix
▶ Row and Colunmn marginal constraint

Umn = {T ∈ Rm×n
+ : T1n = a,TT1m = b}
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Proposal
Motivation

▶ Reduce the size of data and centroid

▶ Adopt two following approaches

1. Sparsify datas
▶ Make data sparser than the original ones
▶ Maintain degradation of the clustering quality as small as possible

2. Shrink datas
▶ No degradation
▶ Key operator to reduce the computational complexities
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Proposal
Basic idea - Sparse simplex projection

▶ Sparse simplex projection GSHP [Kyrillidis et al., 2013]

β̂ = Projγ(t)(β) =

{
β̂|S⋆ = P∆κ(β|S⋆)

β̂|(S⋆)c = 0,

▶ S is the subset of N = {1, . . . , n}
▶ a|S extracts the elements of S in a

▶ (P∆κ(β|S∗))v = [(β|S∗)v + τ ]+, τ := 1
κ
(1 +

∑|S∗| β|S∗)
▶ S∗ = supp(P∆κ)

▶ supp(a) = {i : ai ̸= 0}
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Proposal
Basic idea - Shrinking datas

▶ The zero elements don’t have effect on transport matrix
▶ Removing the zero elements

▶ Define shrinking operator to vector and matrix

ν̃i = shrink(ν̂i) = (ν̂i)|Ssamp
∈ R|Ssamp|

c̃i = shrink(ĉi) = (ĉi)|Scent
∈ R|Scent|

C̃ = Shrink(Cνc) = Csupp(ν̂i),supp(ĉi)
∈ R|Ssamp|×|Scent|
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Proposal
Basic procedure

1. Update sparsity ratio γ(t)

2. Project νi into ν̂i and shrink ν̂i into ν̃i

3. Project cj into ĉj and shrink ĉj into c̃i

4. Shrink ground cost matrix C into C̃

5. Find closest centroids and update centroids

6. Unless cluster centroids stop changing, repeat step1

▶ Control parameter of sparse ratio γ(t)

γ(t) :=


γmin (FIX)

1− (1− γmin)

Tmax
t (DEC)

γmin +
(1− γmin)

Tmax
t (INC),

▶ Tmax is maximum iteration of k-means
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Experiment
Settings

▶ Use of Algorithm
▶ Wasserstein barycenter [Cuturi and Doucet, 2014]
▶ k-means with litekmeans
▶ linprog of Mosek to solve LP [Andersen et al., 2000]

▶ Datasets
▶ COIL-100 [Nene et al., 1996]
▶ the USPS handwritten dataset
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Experiment
2-D histogram evaluation

(a) Purity (b) NMI

(c) Accuracy (d) Computation time

Figure: Performance results of 2-D histogram data on the USPS dataset.
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Experiment
Convergence Performance

Figure: Left : Convergence performance with different projection data using
DEC algorithm of γmin = 0.5 Right:Convergence performance comparison of
different algorithm of γ(t) of γmin = 0.5

KASAI Laboratory, WASEDA University. All Rights Reserved. 11/18



Introduction Proposal Experiment References

Experiment
Comparoson on different sparsity

Figure: Performance comparison on different ratios on the USPS dataset.
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Experiment
Conclusion

▶ We propose a faster Wasserstein k-means algorithm

▶ Our experiments demonstrate the effectiveness of our method
▶ Reducing the computational complexity of Wasserstein distance
▶ Keeping accuracy before sparsifying and shrinking
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Thank you for listening.
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