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Il Methods
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Il Temperature in networks

A network is represented by a |V| x |V| adjacency matrix whose elements indicate
the existence or otherwise of edges |E|. We denote the weight of each edge is w so

that the total energy isthat U = w|E|.

* theentropy S = kglnW = —|V|2kB[||VE||2 In Illfllz + <1 — %) In(1 — %)]
where kg is Boltzmann constant
* the corresponding 1 [0S kg |V]?
temperature T (ﬁ)w = G~V

 the standard deviation 14 V] 2
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Il Canonical ensembles

» the Gibbs approach

» the traditional approach
 Introduce the concept of an ensemble

« Measure a property of a network
several times without controlling e Astatistical ensemble is a probability
the microscopic states distribution for the state of the system
« Convenient

e Complex

 the average internal energy
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Il Weighted networks

A weighted network contains a weighting function for the edges. We take the edge
weights to be analogous to the energy states. The distribution of weights is mapped
to the density of microstates (DOS) in the networks. This is closely related to the
degree distribution.

* the partition function Zy = j e P®D(w) dw where D (w) is the distribution function for the weights
0

> Exponential distribution D(w) = ke*” > Power-law distribution D(w) =co’
« the partition function Z = ﬂL,(,B >a >0) « the partition function 7" = Crlg :1“1)
—a
« theinternal energy U’ 1  the internal energy up _rtt
-« p
* the entropy S,, =log( ﬂfa>+ [f ” « the entropy SP = |og(crgjl>)+7+1
 the heat capacity C, = ( ﬂfa)z * the heat capacity Ch=y+l




Il Experiment results
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Fig. 1. The behaviour of average degree per node as a function of temperature
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Fig. 2. Histograms of degree fluctuation for three different classes of complex
network models(Erd6s-Rényi random graph model, the Watts-Strogatz small-
world model and the Barabisi-Albert scale-free model), N = 1,000, L =
10,000

The random graphs and small-world networks have narrow bandwidth distribution.
However, the scale-free networks exhibit a rather different distribution with a broad

bandwidth in the degree fluctuation.



Il Experiment results
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Fig. 3. Thermal quantities in NYSE (1987-2011) derived from directed networks.
| Ak s Each group of network features forms
SN e a cluster in the projection space. This
T ot provides a good separation among the
23 il three groups of Alzheimer’ s subjects
(AD, NHC, MCI).

Fig. 7. Visualisation of leading LDA components for thermal features used to
classify three groups of patients in the Alzheimer’s disease study (AD, NHC,
MCI).

The sharp peaks in the
thermodynamic characterisations
Indicate significant changes in
network structure events during
the different financial crises.




| Conclusions

[ Innovation ] [ Utility ] [ Future work ]
 develop a novel thermodynamic * identify fluctuations in  explore the micro-canonical
analogy (the edges are mapped network structure and grand-canonical
to the particles) « distinguish different kinds ensembles
 explore a weighted network of network structures  break the conservation law
representation underpinning Boltzmann
« the thermal characterisations are statistics

derived from the corresponding
partition function

 give global properties such as
average internal energy, entropy,
heat capacity



