

Attributes Aware Face Generation with Generative Adversarial Networks

Zheng Yuan Jie Zhang Shiguang Shan Xilin Chen

Institute of Computing Technology, Chinese Academy of Sciences

Task: Attribute to Facial Image

blond hair female mouth slightly open arched eyebrows heavy makeup

Related Work

• Text to image

<u>StackGAN++</u>, <u>AttnGAN</u>, <u>MirrorGAN</u>, etc.
The input is different: text vs attribute
Can not well embed the attribute label

• Attribute to image

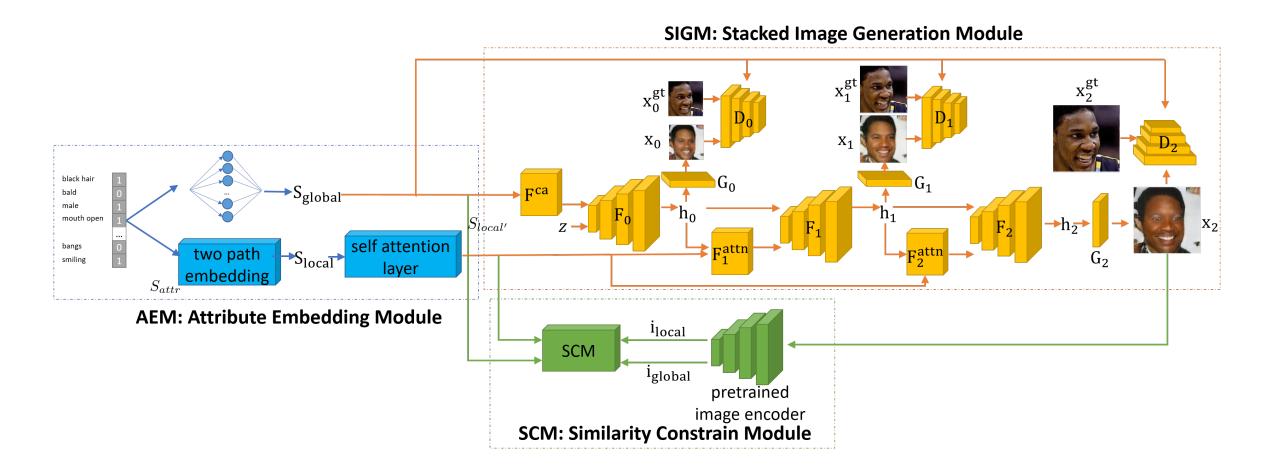
➢<u>Attribute2sketch2face</u>, <u>Lu et al.</u>, <u>Wang et al.</u>, etc.

➤ the generated images are always low resolution

≻do not consider the relationship between different attributes

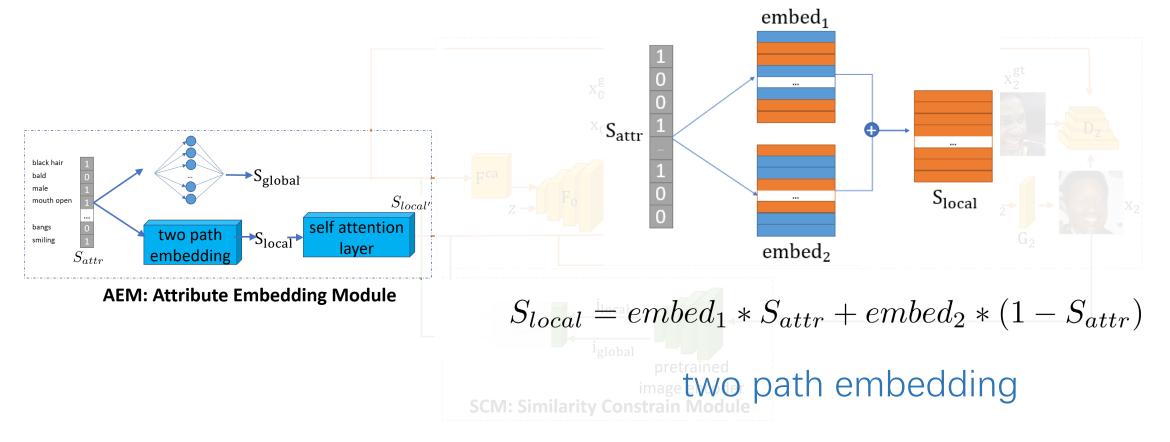
Method: AFGAN

• Attributes Aware Face Generation with Generative Adversarial Networks



• AEM: Attribute Embedding Module

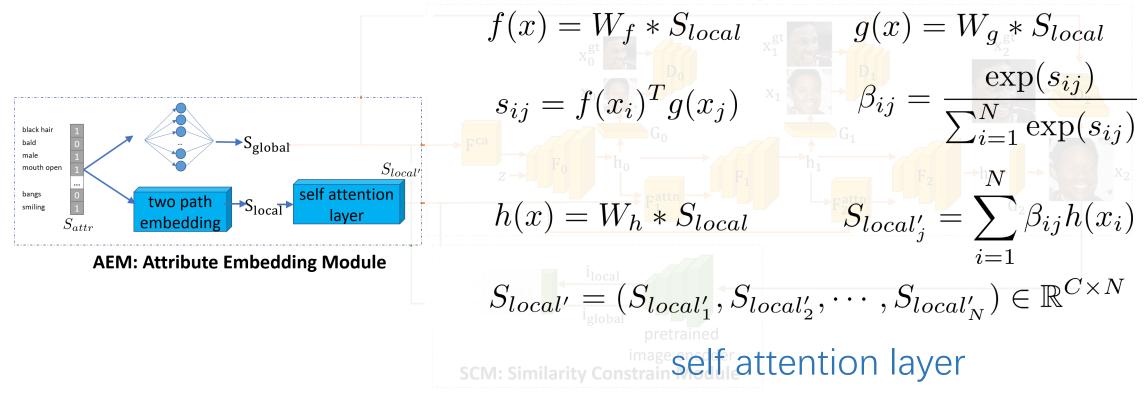
convert the input face attributes into global and local features respectively
two path embedding: well reflect their meanings of the input attribute



• AEM: Attribute Embedding Module

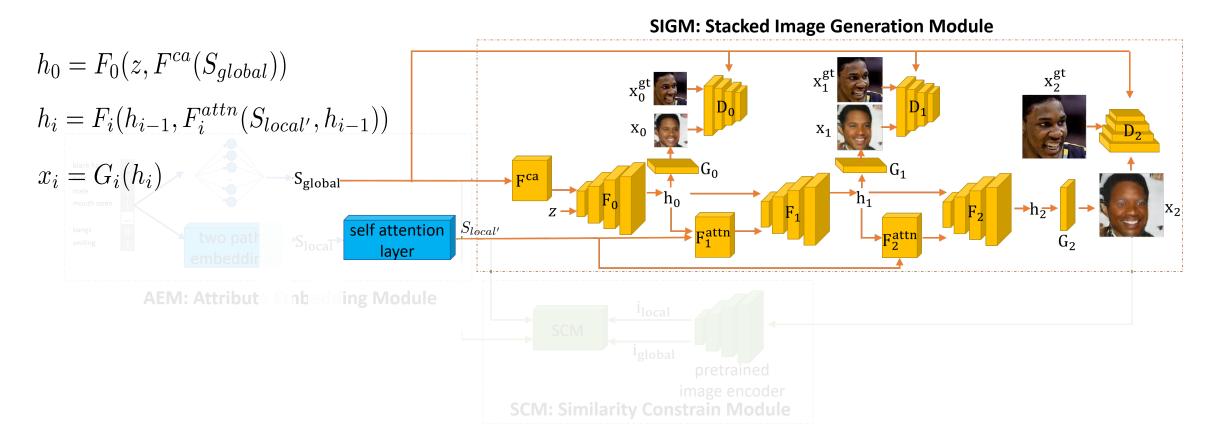
convert the input face attributes into global and local features respectively
self attention layer: model the relationships between different attributes

SIGM: Stacked Image Generation Module



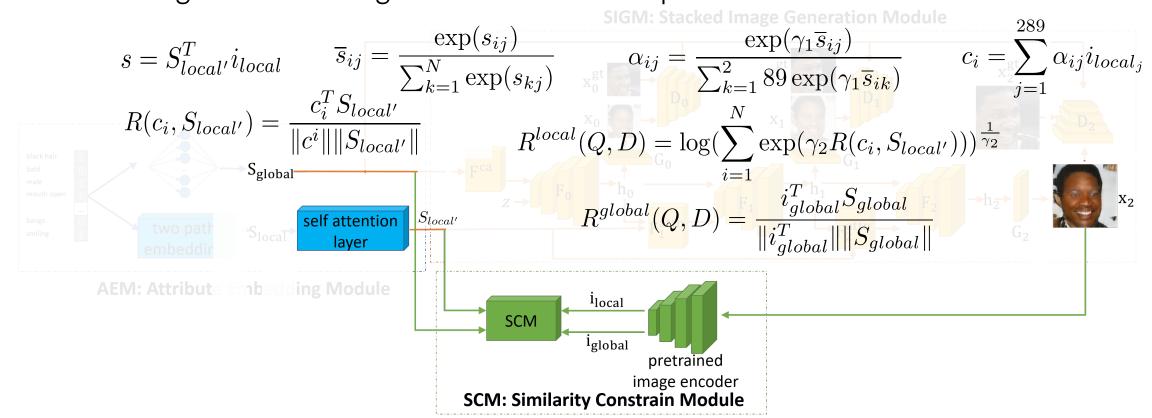
• SIGM: Stacked Image Generation Module

Gradually generate faces with more details through a three-stage generator
Can generate images with high resolution



• SCM: Similarity Constrain Module

>encode the generated images with a pretrained model: i_{local} and i_{global} >calculate the matching degree between attribute features and image features>the generated images can match the input attributes well



Formulation

• Generator

➢Overall objective function

$$\mathcal{L} = \mathcal{L}_G + \mathcal{L}_{SCM}$$

≻In SIGM $\mathcal{L}_{G} = \sum_{i=0}^{2} \mathcal{L}_{G_{i}} \qquad \qquad \mathcal{L}_{G_{i}} = -\frac{1}{2} \mathbb{E}_{x_{i} \sim p_{G_{i}}} \left[\log \left(D_{i} \left(x_{i} \right) \right) \right] - \frac{1}{2} \mathbb{E}_{x_{i} \sim p_{G_{i}}} \left[\log \left(D_{i} \left(x_{i}, S_{global} \right) \right) \right]$ unconditional ≻In SCM $\mathcal{L}_{SCM} = \mathcal{L}_1^{local} + \mathcal{L}_2^{local} + \mathcal{L}_1^{global} + \mathcal{L}_2^{global}$ $\mathcal{L}_{2}^{local} = -\sum_{i=1}^{M} \log P^{local} \left(Q_{i} | D_{i} \right)$ $\mathcal{L}_{1}^{local} = -\sum_{i=1}^{M} \log P^{local} \left(D_{i} | Q_{i} \right)$ $\mathcal{L}_{1}^{global} = -\sum_{i=1}^{M} \log P^{global} \left(D_{i} | Q_{i} \right)$ $\mathcal{L}_{2}^{global} = -\sum_{i=1}^{M} \log P^{global} \left(Q_{i} | D_{i} \right)$

Formulation

• The matching degree between generated images and input attributes

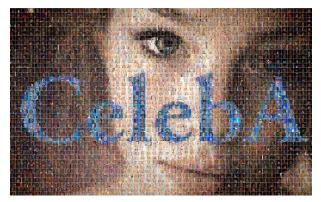
$$P^{local}\left(Q_{i}|D_{i}\right) = \frac{\exp\left(\gamma_{3}R^{local}\left(Q_{i},D_{i}\right)\right)}{\sum_{j=1}^{M}\exp\left(\gamma_{3}R^{local}\left(Q_{j},D_{i}\right)\right)} \qquad P^{local}\left(D_{i}|Q_{i}\right) = \frac{\exp\left(\gamma_{3}R^{local}\left(Q_{i},D_{i}\right)\right)}{\sum_{j=1}^{M}\exp\left(\gamma_{3}R^{global}\left(Q_{i},D_{i}\right)\right)} \qquad P^{global}\left(D_{i}|Q_{i}\right) = \frac{\exp\left(\gamma_{3}R^{global}\left(Q_{i},D_{j}\right)\right)}{\sum_{j=1}^{M}\exp\left(\gamma_{3}R^{global}\left(Q_{j},D_{i}\right)\right)} \qquad P^{global}\left(D_{i}|Q_{i}\right) = \frac{\exp\left(\gamma_{3}R^{global}\left(Q_{i},D_{i}\right)\right)}{\sum_{j=1}^{M}\exp\left(\gamma_{3}R^{global}\left(Q_{j},D_{i}\right)\right)} \qquad P^{global}\left(D_{i}|Q_{i}\right) = \frac{\exp\left(\gamma_{3}R^{global}\left(Q_{i},D_{i}\right)}{\sum_{j=1}^{M}\exp\left(\gamma_{3}R^{global}\left(Q_{i},D_{i}\right)\right)}$$

• Discriminator $\mathcal{L}_D = \sum_{i=0}^2 \mathcal{L}_{D_i}$

$$\mathcal{L}_{D_{i}} = -\frac{1}{2} \mathbb{E}_{x_{i}^{gt} \sim p_{data_{i}}} \left[\log D_{i} \left(x_{i}^{gt} \right) \right] - \frac{1}{2} \mathbb{E}_{x_{i} \sim p_{G_{i}}} \left[\log \left(1 - D_{i} \left(x_{i} \right) \right) \right] \text{ unconditional} \\ -\frac{1}{2} \mathbb{E}_{x_{i}^{gt} \sim p_{data_{i}}} \left[\log D_{i} \left(x_{i}^{gt}, S_{global} \right) \right] \\ -\frac{1}{2} \mathbb{E}_{x_{i} \sim p_{G_{i}}} \left[\log \left(1 - D_{i} \left(x_{i}, S_{global} \right) \right) \right]$$

• Dataset: CelebA

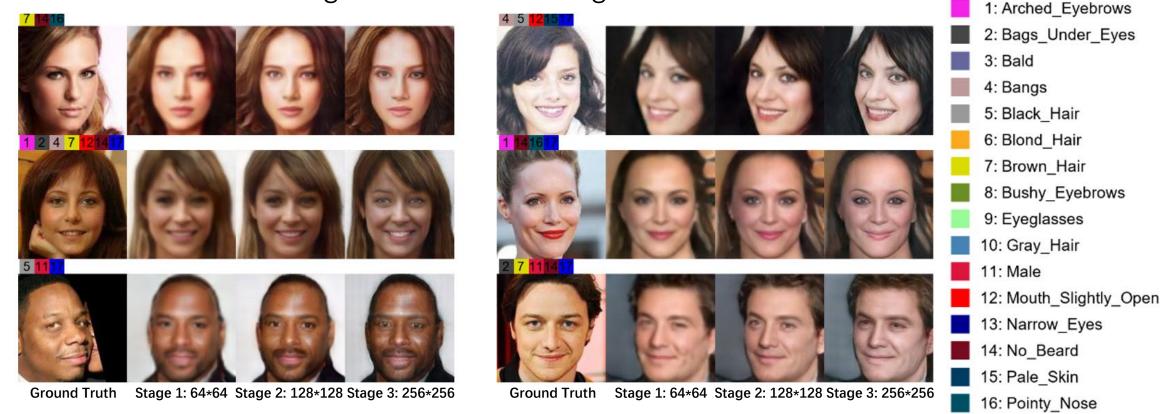
No.	Attribute	No.	Attribute	
0	5 o'clock Shadow	9	Eyeglasses	
1	Arched Eyebrows	10	Gray Hair	
2	Bags Under Eyes	11	Male	
3	Bald	12	Mouth Slightly Open	
4	Bangs	13	Narrow Eyes	
5	Black Hair	14	No Beard	
6	Blond Hair	15	Pale Skin	
7	Brown Hair	16	Pointy Nose	
8	Bushy Eyebrows	17	Smiling	



• The attention maps in SCM module

> the response areas of different attributes are consistent with common sense

The generated face images of three stages in SIGM module
➤ the faces generated in the three stages are consistent
➤ more details in higher resolution images



17: Smiling

The generated face images in ablation study of AFGAN model
➤ the quality of the images generated by AFGAN is clearer and more realistic

• The quantitative evaluation of generated images

	BRISQUE↓	IS↑	FID↓	MS-SSIM↓
AttnGAN	62.843	5.124	40.254	0.398
Wang et al.		2.2	43.8	
AFGAN(ours)	35.979	5.853	36.607	0.347

Project Code

Thank you!

zheng.yuan@vipl.ict.ac.cn

Institute of Computing Technology, Chinese Academy of Sciences

