Embedding shared low-rank and feature correlation for multi-view data analysis

Zhan Wang¹, Lizhi Wang¹, Lei Zhang¹, Hua Huang²

¹School of Computer Science and Technology, Beijing Institute of Technology, Beijing, China
² School of Artificial Intelligence, Beijing Normal University, Beijing, China

ICPR 2020

- 2 Related works
- 3 Proposed method
- 4 Experiments
- 5 Conclusion

Embedding shared low-rank and feature correlation for multi-view data analysis

- Motivation

Motivation

The image or video can be represented as multiple views.

• Exploring structure and common component form multi-view data is important.

- Motivation

Motivation

- Multi-view learning is a solution for multi-view data analysis and multi-view subspace learning is a kind of representative method.
- Conventional multi-view subspace learning methods such as CCA, PLS, have been proposed.
 - The correlations among multiple heterogeneous features can not directly characterize the structure information and the consensus of multi-view data
 - These methods cannot deal with noisy data well.
- Our proposed method: Integrating self-expressiveness and correlation-based subsapce learning.

Related works

Related works

Low-rank representation:

$$\min_{\mathsf{H},\mathsf{O}} \|\mathsf{H}\|_* + \eta \|\mathsf{O}\|_{2,1}, s.t. \; \mathsf{A} = \mathsf{A}\mathsf{H} + \mathsf{O}, \tag{1}$$

where $A \in \mathbb{R}^{d \times n}$: data matrix, $H \in \mathbb{R}^{n \times n}$: representative matrix, $O \in \mathbb{R}^{d \times n}$: the error component.

Correlation-based multi-view subspace learning

$$\max_{\mathsf{P}_{1},\cdots,\mathsf{P}_{m}} \sum_{i} \sum_{j,i\neq j} tr(\mathsf{P}_{i}^{\mathsf{T}}\mathsf{C}_{ij}\mathsf{P}_{j}), s.t. \; \mathsf{P}_{i}^{\mathsf{T}}\mathsf{C}_{ii}\mathsf{P}_{i} = \mathsf{I}, i = 1, \cdots, m,$$
(2)
where $\mathsf{C}_{ij} = \mathsf{X}_{i}\mathsf{X}_{j}^{\mathsf{T}}(i\neq j)$ and $\mathsf{C}_{ii} = \mathsf{X}_{i}\mathsf{X}_{i}^{\mathsf{T}}.$

Proposed method

Proposed method

$$\min_{\substack{\mathsf{U},\mathsf{V}\\\mathsf{Z},\mathsf{P}_i,\mathsf{E}_i}} \|\mathsf{U}\|_* + \|\mathsf{V}\|_* + \lambda \sum_i \|\mathsf{E}_i\|_{2,1}$$

$$-\alpha \sum_i \sum_{j,i\neq j} tr(\mathsf{P}_i^\mathsf{T}\mathsf{C}_{ij}\mathsf{P}_j) + \beta \sum_i \|\mathsf{P}_i\|_{2,p}^p \qquad (3)$$
s.t. $\mathsf{P}_i^\mathsf{T}\mathsf{X}_i = \mathsf{P}_i^\mathsf{T}\mathsf{X}_i\mathsf{Z} + \mathsf{E}_i, \mathsf{Z} = \mathsf{U}\mathsf{V}, \mathsf{P}_i^\mathsf{T}\mathsf{P}_i = \mathsf{I}$

$$i = 1, 2, \cdots, m.$$

- Multiple views have common representation matrix.
- Double nuclear norm is used to construct more accurate low-rank representation matrix.
- Correlation analysis reveal the correlation of multi-view data.

Proposed method

Proposed method

$$\min_{\substack{\mathsf{U},\mathsf{V}\\\mathsf{Z},\mathsf{P}_i,\mathsf{E}_i}} \|\mathsf{U}\|_* + \|\mathsf{V}\|_* + \lambda \sum_i \|\mathsf{E}_i\|_{2,1} \\
- \alpha \sum_i \sum_{j,i \neq j} tr(\mathsf{P}_i^\mathsf{T}\mathsf{C}_{ij}\mathsf{P}_j) + \beta \sum_i \|\mathsf{P}_i\|_{2,p}^p \qquad (4)$$
s.t. $\mathsf{P}_i^\mathsf{T}\mathsf{X}_i = \mathsf{P}_i^\mathsf{T}\mathsf{X}_i\mathsf{Z} + \mathsf{E}_i, \mathsf{Z} = \mathsf{U}\mathsf{V}, \mathsf{P}_i^\mathsf{T}\mathsf{P}_i = \mathsf{I}$
 $i = 1, 2, \cdots, m.$

- $\ell_{2,p}$ norm on projection matrix is used to select a subset with representative features from the multi-view data
- A unify framework, which explores the structure and correlation, is develop for seeking the robust projection.
- ADMM algorithm is adopted to solve the optimization problem.

- Experiments

Experiments

 Experimental datasets: Yale face, eNTERFACE'05 audio-visual emotion, and COIL-20 object object datasets

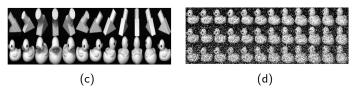


Figure: Some sample images used in the experiments. (a) Yale face dataset, (b) eNTERFACE'05 emotion dataset and (c) COIL-20 object dataset.

- Experiments

Experiments

- Experimental setting:
 - Yale:intensity feature (4096), LBP feature (3304) and Gabor feature (6750);
 - eNTERFACE'05: acoustic feature IS10 (1582) and dynamic textures feature HOG-TOP (1728);
 - COIL-20: intensity feature (4096), HOG feature (1764) and Gabor feature (1280).
- Comparison methods: Single-view algorithms, including PCA and LRE; Multi-view subspace learning algorithms, including MCCA, SCCA, PLS and MDcR.

Experiments

Experiments

Recognition performances (%) on fale dataset			
Method	<i>l</i> = 40	/ = 50	<i>l</i> = 60
PCA _{FC}	69.33±3.46	72.86±3.34	75.00±4.20
LRE _{FC}	$69.92{\pm}2.31$	74.10±3.93	77.89±3.37
MCCA	70.75±3.67	73.33±3.10	77.89±3.37
SCCA	67.50±3.83	70.38±2.11	72.78±3.79
PLS	70.58±4.30	72.86±3.15	$75.00{\pm}2.58$
MDcR	73.00±2.81	76.67±3.68	81.78±3.60
ESLRFC	73.75±3.50	77.71±3.94	82.89±3.40

Recognition performances (%) on Yale dataset

Recognition performances (%) on eNTERFACE'05 dataset

Method	<i>l</i> = 60	l = 80	/ = 100
PCA _{FC}	58.70±1.48	65.80±2.40	$71.87{\pm}1.07$
LRE _{FC}	58.75±1.43	65.90±2.37	$71.90{\pm}1.10$
MCCA	53.21 ± 1.93	61.35±2.30	67.69±2.74
SCCA	$56.33 {\pm} 1.97$	63.16±2.25	69.03±2.03
PLS	53.90±1.34	60.84±2.65	64.95±2.90
MDcR	63.30±1.58	70.57±2.18	76.38±2.69
ESLRFC	$63.08 {\pm} 1.71$	71.65±2.60	77.95±2.19

Experiments

Experiments

Recognition performances (%) on COIL-20 dataset			
Method	<i>l</i> = 5	/ = 10	l = 15
PCA _{FC}	84.78±1.74	90.59±0.96	95.32±0.59
LRE _{FC}	$84.96{\pm}1.41$	$91.31{\pm}1.06$	95.38±0.79
MCCA	83.62±1.57	91.06±1.14	94.79±0.86
SCCA	83.75±1.74	90.67±0.98	95.21±0.57
PLS	85.01±1.44	91.23±1.01	95.26±0.79
MDcR	$85.23{\pm}1.61$	91.42±1.22	$95.51{\pm}0.66$
ESLRFC	85.78±1.93	92.19±0.97	95.88±0.73

Recognition performances (%) on COIL-20 dataset

Recognition performances (%) on noisy COIL-20 dataset.

Method	20% noise	30% noise	40% noise
PCA _{FC}	$92.98{\pm}0.68$	90.04±0.56	84.54±1.46
LRE _{FC}	93.71±0.63	92.61±0.64	90.72±0.91
MCCA	$92.90{\pm}0.70$	90.08±0.85	83.80±1.17
SCCA	89.97±0.83	$84.19{\pm}0.80$	$78.97{\pm}1.59$
PLS	92.49±0.75	88.61±0.92	84.08±0.69
MDcR	$94.10{\pm}0.56$	92.62±0.52	89.85±0.78
ESLRFC	94.48±0.90	93.14±0.81	90.86±1.04

Experiments

Experiments

Method	Yale	eNTERFACE'05	COIL-20
$ESLRFC_{\lambda}$	82.11±2.84	76.13±2.26	94.87±0.66
$ESLRFC_{\alpha}$	81.67±3.15	68.85±0.84	95.34±0.65
$ESLRFC_{\beta}$	81.56±2.36	74.36±1.94	94.59±0.72
ESLRFC	82.89±3.40	77.95±2.19	95.88±0.73

Ablation study (%) of our method on three datasets

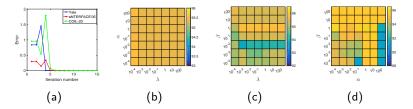


Figure: The sensitive analysis of ESLRFC. (a) convergence, (b),(c) and (d) parameter influences.

- Conclusion

Conclusion

- Propose a novel unsupervised method, named embedding shared low-rank and feature correlation (ESLRFC), for multi-view data analysis.
 - A robust shared low-rank model is first proposed to explore the global structure and consistency of multi-view data in the embedding subspace, and to make our method robust to noise.
 - A kind of correlation analysis is developed to explore the correlations among multi-view features and remove the redundancy of each view.
- Seeking robust projection matrices for obtaining common subspace.
- Good results on the classification tasks

Embedding shared low-rank and feature correlation for multi-view data analysis

Conclusion

Thank you!