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Intuition Different Temporal Operations

Different Temporal Operations
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Figure: Comparison of different temporal operations. (a)shift temporal
operation with fixed kernel weight and kernel size. (b) learnable temporal
operation with the fixed kernel size of depthwise 1D convolution. (c) Mixed
Temporal Convolution(MixTConv) with different kernel sizes of depthwise 1D
convolution.
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Related Works Spatiotemporal modeling
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Figure: (a)2D CNN-based methods divide the video into N segments and
samples one frame from each segment, then consensus the result by averaging.
(b)3D CNN-based methods jointly learn spatiotemporal features in an elegant
way.
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Related Works Efficient Temporal Modeling

(a)TRN (b)TSM

Figure: (a)TRN adds temporal fusion after feature extraction, leading to
limited improvement of performance. (b) TSM utilizes shifting operation
which shifts a portion of the channels along the temporal dimension.
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Related Works Mixed Convolution

Figure: MixConv uses 2D spatial convolution filters of different kernel sizes to
extract spatial features of various resolutions, for improving image recognition
accuracy.
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Method MixTConv: Mixed Temporal Convolution

MixTConv: Mixed Temporal Convolution
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Figure: The pipeline of the proposed video action recognition network Mixed
Spatiotemporal Network(MSTNet), based on the Mixed Temporal
Convolution. ”Ks” means kernel size, and ”DW” means depthwise.
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MixTConv: Mixed Temporal Convolution

Ẑm
i,t =

∑
j

F̂ i
t+jW km−1

2 +j ,m = 1, ..., g, (1)

where j ∈ [−km−1
2 , km−1

2 ] and Ẑm
i,t is the value of Ẑm at the t-th frame and

i-th channel. The final output tensor is a concatenation of all the output
tensor {Ẑ1, ..., Ẑg} :

Z = Concat(Ẑ1, ..., Ẑg). (2)
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Method Mixed Spatiotemporal Block

Mixed Spatiotemporal Block
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Figure: Comparision for MST Block head and MST Block inner.
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Experiments Datasets

Datasets

Kinetics-400 [14] is a large-scale dataset with 400 classes sourced from
YouTube, and is one of the most popular action recognition benchmarks.
UCF-101 [15] is an action recognition dataset of realistic action videos,
collected from YouTube, having 101 action categories.
Something-Something v1 and v2 [1] are two large-scale video datasets for
action recognition.
Jester [13] is a large collection of densely-labeled video clips that show humans
performing pre-defined hand gestures in front of a laptop camera or webcam.

Shan et. al. (WICT, PKU) MixTConv January 10, 2020 13 / 21



Experiments Ablation Study

Comparision of 2D CNN Baseline

Table: Comparisons between the proposed MSTNet and 2D CNN baseline
TSN.

Dataset Model MixTConv Top-1 Top-5 ∆ Top-1

Kinetics-400
TSN[3] 8 68.8 88.3

+2.5
Ours 3 71.3 89.5

UCF-101
TSN[3] 8 91.5 99.2

+3.3
Ours 3 94.8 99.6

Something
v1

TSN[3] 8 20.5 47.5
+27.6

Ours 3 48.1 77.3

Something
v2

TSN[3] 8 30.4 61.0
+31.4

Ours 3 61.8 87.8

Jester
TSN[3] 8 83.9 99.6

+13.0
Ours 3 96.9 99.9
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Experiments Ablation Study

Comparision of kernel sizes

Table: Comparisons of different temporal operations and configurations (i.e.,
the kernel size and the combinations of the filters) on Something-Something
v1. ”ks”denotes kernel size and * denotes shifting convolution.

Method Kernel Size Dilation Learnable Top-1 FLOPS
TSN(baseline)[3] - - 8 19.7 33G
TSN+Ordinary 1D 3 1 3 41.0 43G
TSM*[11] 3* 1 8 45.6 33G
TSN+ks3 3 1 3 45.9 33.13G
TSN+ks5 5 1 3 46.3 33.23G
TSN+ks7 7 1 3 45.8 33.32G
TSN+ks13 1,3 1 3 45.8 33.09G
TSN+ks135 1,3,5 1 3 46.4 33.13G
TSN+ks1357 1,3,5,7 1 3 46.7 33.18G
TSN+ks357 3 1,2,3 3 46.4 33.13G
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Experiments Comparison with the State-of-the-Art

Something-Something v1 and v2

Figure: Comparisons with state-of-the-art methods on Something-Something
v1 and Something-Something v2.
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Visualization

Visualization

(a) TSN (b) MSTNet

Figure: t-SNE plots of the output layer features preceding the final fully
connected layers for (a) TSN, and for MSTNet(b) on Something-Something
v1.
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Conclusions

Conclusions

In this work, we propose a lightweight and plug-and-play operation named
Mixed Temporal Convolution (MixTConv) for action recognition, which
partitions input channels into groups and performs depthwise 1D convolution
with different kernel sizes to capture multi-scale temporal information. It can
be flexibly inserted into any 2D CNN backbones to enable temporal modeling
with negligible extra computational cost. We further design a Mixed
Spatiotemporal Network (MSTNet) for action recognition, by plugging
MixTConv into the building block of ResNet-50. Experimental results on
Something-Something v1, v2 and Jester benchmarks consistently indicate the
superiority of the proposed MSTNet with the MixTConv operation.
Additional ablation studies further demonstrate that the designs of the
proposed MixTConv operation and MSTNet are effective and reasonable.
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