Sensor-independent Pedestrian Detection for Personal Mobility Vehicles in Walking Space Using Dataset Generated by Simulation (631)

Takahiro Shimizu*, Kenji Koide**, Shuji Oishi**, Masashi Yokozuka**, Atsuhiko Banno** and Motoki Shino*

* The University of Tokyo ** National Institute of Advanced Industrial Science and Technology (AIST)

Introduction

Self-driving for wheal chairs

- Transportation for the elderly and the physically handicapped
- Accurate pedestrian detection in walking space is indispensable

Strategy

Laser intensity-free detection

- Recent methods rely on laser reflectance as additional information.
- These network may be affected by the difference of LIDAR models.

Intensity-free Network

Dataset in walking space

- The majority of datasets focuses on road scenes (e.g. KITTI[1]).
- They are not optimal for object detection in walking spaces.

Walking space dataset for wheel chairs

Proposed Network

CosPointPillars

 As an alternative channel for reflection intensity, Cosine Estimation Network is added to PointPillars^[4]

Why Cosine?

- Lambertian model

Intensity
$$\propto \frac{K_{\lambda} \cos \theta}{d^2}$$
 $\begin{pmatrix} \theta : & \text{Incident angle} \\ d : & \text{Distance} \\ K_{\lambda} : & \text{Object reflectivity} \end{pmatrix}$

<u>Use cosθ</u> instead of the laser reflectivity for a general detection network:

It reflects the local characteristics of the reflection intensity while it can be extracted from the positional relationship with neighboring points

Proposed Network

CosPointPillars

 As an alternative channel for reflection intensity, Cosine Estimation Network is added to PointPillars^[4]

[4]A. H. Lang, S. Vora, H. Caesar, L. Zhou, J. Yang, and O. Beijbom, "Pointpillars: Fast Encoders for Object Detection from Point Clouds." In CVPR, 2019. [5]C. R. Qi, H. Su, K. Mo, and L. J. Guibas. Pointnet: Deep learning on point sets for 3d classification and segmentation, CVPR, 2017.

Evaluation

Datasets

- KITTI [Geiger, CVPR2012]
- nuScenes [Caesar, CVPR2020]

Metric

- IoU in 2D Birds' Eye View
- Avg. Precision

Evaluation Results

- The accuracy of PointPillars largely deteriorates when the reflectance is not available
- CosPointPillars retains the accuracy by explicitly estimating the local geometrical features
 - **➡** Sensor-independent detection performance

Network	Reflectance	KITTI (IoU 0.5)			NuScenes	
		Easy	Moderate	Hard	IoU 0.5	loU 0.15
PointPillars	w/	84.36	79.97	76.82	-	-
	w/o	80.22	75.92	74.48	30.23	55.29
CosPointPillars	w/o	82.35	77.29	75.94	32.83	56.94

Pedestrian Detection in a Walking Space

Realistic 3D LiDAR Simulation

- 1. Generate Omni-directional depth images
- 2. Perform ray-casting on the depth images
- 3. Generate annotation (Labels and BBoxes)

AirSim (Rough collision models)

We generated a pedestrian detection dataset with over 22k frames and 120k labels

Pedestrian Detection in a Real Environment

Network trained on KITTI

- Failed to detect nearby pedestrians
- KITTI is taken on a roadway scene and doesn't contain nearby pedestrian data

Network trained on SimDataset

- Nearby pedestrians are robustly detected
- Simulation-based approach enables us to generate a tailor-made dataset for a specific use scenario

Conclusion

- We proposed CosPointPillars, a reflectance-intensity-free
 3D pedestrian detection network
- CosPointPillars explicitly estimates the cosine local geometric features to compensate for the removed reflectance intensity information
- ◆ <u>A large-scale simulation-based pedestrian dataset</u> was created to apply CosPointPillars to a real use scenario
- We succeeded in improving the pedestrian detection accuracy in a real walking space environment