

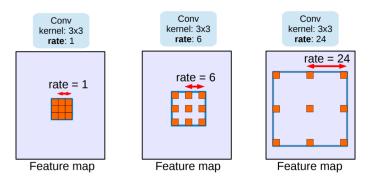
Boundary-aware Graph Convolution for Semantic Segmentation

Hanzhe Hu, Jinshi Cui and Hongbin Zha School of Electronics Engineering and Computer Science, Peking University huhz@pku.edu.cn, cjs@cis.pku.edu.cn, zha@cis.pku.edu.cn

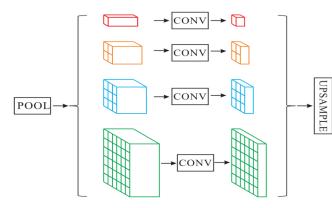
Background

Context-based methods

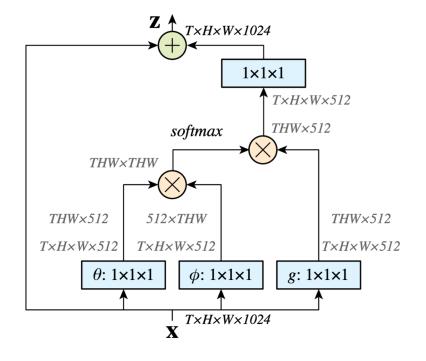
Dilated convolution

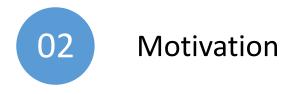


Pyramid pooling



Non-local block





- Enhance the similarity of the same object .
- Keep the discrimination of other objects .
- Graph convolution is good at passing information with the design of adjacency matrix and proves to be a good reasoning method.

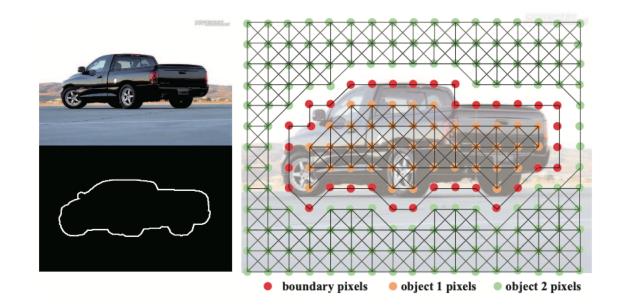
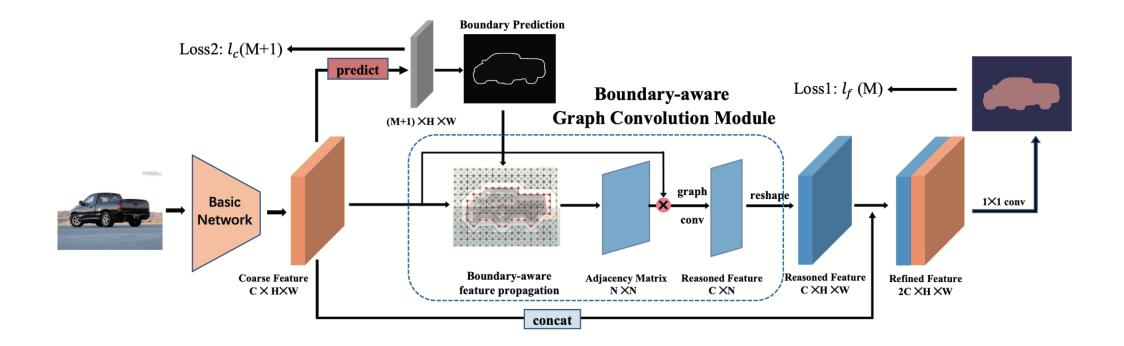


Illustration of our proposed feature propagation design. The connections only exists within the same object (pixels of object 1 are not connected to pixels of object 2), which helps to enhance the feature similarity of the same object and keep discrimination of others.

Coarse-to-fine Framework



Method

Graph Construction:

We treat pixels in the feature map as nodes in the defined graph.

• Similarity Graph.

Each weight of edge which connecting two nodes in the graph is similarity function between two node features:

$$F(\boldsymbol{x_i}, \boldsymbol{x_j}) = \phi(\boldsymbol{x_i})^T \phi'(\boldsymbol{x_j})$$
$$A_{ij} = \frac{exp(F(\boldsymbol{x_i}, \boldsymbol{x_j}))}{\sum_{j=1}^{N} exp(F(\boldsymbol{x_i}, \boldsymbol{x_j}))}$$

• Boundary-aware Sampling.

Specifically, for every node in the graph, if it belongs to the boundary, the edges connecting it with other nodes are canceled whose weights equal to 0.

Graph Reasoning:

 $Z = \sigma(AXW)$ (Z: reasoned feature, A: adjacency matrix, X: input feature, W: learned weight)

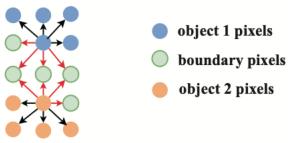


Illustration of boundary-aware sampling method. Black line denotes the normal connection and red line denotes the canceled connection.

03

Experiments

Ablation studies on Cityscapes validation set.

1. Performance comparisons of our proposed boundary-aware GCN and plain-GCN.

Method	n	nIOU(%)
ResNet-101 Baseline ResNet-101 + plain GCN ResNet-101 + boundary-aware GCN		76.3 78.2 79.9

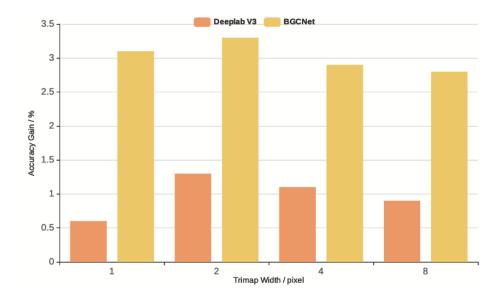
2. Detailed performance comparisons of our proposed Boundary-aware Graph Convolution module.

Method	mIOU(%)
ResNet-101 Baseline	76.3
ResNet-101 + ASPP	78.4
ResNet-101 + BGC	79.9
ResNet-101 + ASPP + BGC	81.1

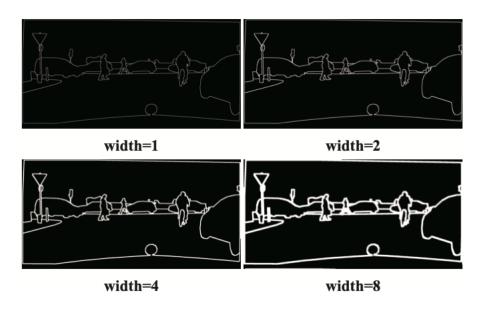
3. Impact of evaluation strategies.

Method	MS	Flip	mIOU(%)
BGCNet			81.1
BGCNet	\checkmark		81.6
BGCNet		\checkmark	81.4
BGCNet	\checkmark	\checkmark	81.9

Impact on boundary accuracy.

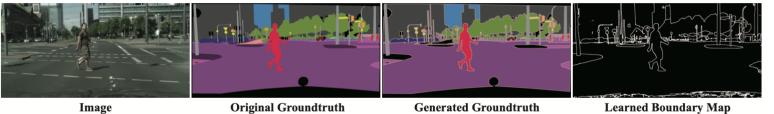


Boundary accuracy gain over baseline for two methods on Cityscapes validation set.



Trimaps used for boundary accuracy evaluation with different band width from Cityscapes validation set .

Visualizations

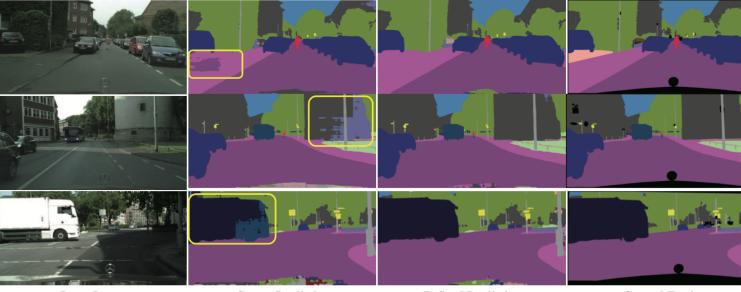


Visualization results of boundary learning.

Image

Learned Boundary Map

Visualization results on Cityscapes validation set.



Input Image

Coarse Prediction

Refined Prediction

Comparisons with state-of-the-art methods on three benchmark datasets.

Method	Backbone	mIOU(%)	Method	Backbone	mIOU(%)
DeepLab-v2 [16] RefineNet [14] GCN [45] SAC [46] PSPNet [3] BiSeNet [47] AAF [48] DFN [49] PSANet [4] DenseASPP [42] GloRe [22] DANet [43]	ResNet-101	70.4 73.6 76.9 78.1 78.4 78.9 79.1 79.3 80.1 80.6 80.9 81.5	FCN [1] DeepLab-CRF [16] PSPNet [3] DFN [49] DANet [43] EncNet [50] BGCNet(Ours) Method FCN-8s [1] DAG-RNN [33] RefineNet [14] CCL [51] DSSPN [52]	VGG-16 VGG-16 ResNet-101 ResNet-101 ResNet-101 ResNet-101 ResNet-101 Backbone VGG-16 VGG-16 ResNet-101 ResNet-101	62.2 71.6 82.6 82.7 82.6 82.9 84.2 84.2 22.7 31.2 33.6 35.7 37.3
BGCNet(Ours)	ResNet-101	81.5 82.1	SGR [23] BGCNet(Ours)	ResNet-101 ResNet-101	39.1 41.7

Thanks for Watching

Boundary-aware Graph Convolution for Semantic Segmentation

Hanzhe Hu, Jinshi Cui and Hongbin Zha School of Electronics Engineering and Computer Science, Peking University huhz@pku.edu.cn, cjs@cis.pku.edu.cn, zha@cis.pku.edu.cn