

VSB2-Net: Visual-Semantic Bi-Branch Network for Zero-Shot Hashing

Xin Li, Xiangfeng Wang, Bo Jin, Wenjie Zhang, Jun Wang and Hongyuan Zha

Outline

- Introduction
- Motivation
- Framework
- Experiments

Introduction

• The definition between traditional hashing and zero-shot hashing

Motivation

• The existing methods mainly focused on optimizing the mapping between hash codes and semantic space, but ignored the core of the hash problem that generates discriminative hash codes.

• The hash codes are binary-like, and have lower representative ability compared with the high-dimensional visual feature vectors, which makes it difficulty to distinguish similar classes in hamming space.

- The architecture is a bi-branch network, which includes the semantic similarity branch and the visual feature transfer branch.
- The reconstruction module and classification module are directly employed to enhance the generalization and transfer abilities on unseen classes.

- Semantic Similarity Branch Network
 - Computing cosine similarity between semantic word vectors
 - Applying *K* nearest neighbors technique to separate all *L* training word vectors into *T* groups
 - utilizing a barycenter-based fisher criteria to maximize the distance between two word vector groups and maintain the similarity relationships within each group
- Loss function is designed as follows

$$\mathcal{L}_{s} = \alpha \sum_{t=1}^{T} \sum_{w^{\ell_{i}}, w^{\ell_{j}} \in \mathcal{N}_{t}} \left\| \operatorname{Sim}(w^{\ell_{i}}, w^{\ell_{j}}) - \operatorname{Sim}(s^{\ell_{i}}, s^{\ell_{j}}) \right\|^{2}$$

$$+ \beta \sum_{t_{1}=1}^{T} \sum_{t_{2}=1, t_{2} \neq t_{1}}^{T} \max \left(0, \lambda - \| \mathcal{BC}(\mathcal{N}_{t_{1}}) - \mathcal{BC}(\mathcal{N}_{t_{2}}) \|^{2} \right)$$

$$+ \gamma \sum_{i=1}^{T} \left\| \left| s^{\ell_{i}} \right| - e \right\|_{1},$$

- Visual Feature Transfer Branch Network
 - employing dot product metric between hash code and the target semantic vector to characterize the similarity relationships
- Loss function is designed as follows

$$\mathcal{L}_t = \sum_{i=1}^{N} \max \left(0, m - b_i^{\mathrm{T}} * s^{\ell_i} + \max_{\ell_j \neq \ell_i} b_i^{\mathrm{T}} * s^{\ell_j} \right)$$

- Task-driven Regularization
 - reconstruction module: push hash codes reconstructing the visual features
 - classification module: drive the error hash codes to near the target semantic vector in order to reduce ambiguity
- Loss function is designed as follows

$$\mathcal{L}_t = \sum_{i=1}^{N} \max \left(0, m - b_i^{\mathrm{T}} * s^{\ell_i} + \max_{\ell_j \neq \ell_i} b_i^{\mathrm{T}} * s^{\ell_j} \right)$$

Experiments

Experiments

Precision-recall curves(64bits) of VSB2-Net on AwA dataset

Effects of different number of class for training and testing on ImageNet dataset.

Experiments

• MAP of two mapping modes w.r.t different numbers of bits on AwA.

Madaad	AwA(MAP)				
Method	16 bits	32 bits	48 bits	64bits	
Mini-SitNet Mini-VSB ² -Net	0.128 0.151	0.150 0.178	0.175 0.220	0.192 0.241	

• MAP of two reconstructive space methods w.r.t different numbers of bits on AwA.

Method	AwA(MAP)				
	16 bits	32 bits	48 bits	64bits	
VSB ² -G VSB ² -Net	0.155 0.175	0.198 0.230	0.217 0.272	0.270 0.293	

• Parameter verification with 64-bit hash codes on AwA.

$MAP \beta$	1	0.1	0.01
1	0.280	0.285	0.274
0.1	0.286	0.292	0.264
0.01	0.274	0.281	0.266

Thank you!

